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Section 4.11. The Fourier Transform

Note. In this section we define the Fourier transform, initially on L'(R) and later

on L?(R). We discuss properties in both settings.

Note. Let f € LY(R) (that is, let f be measurable and integrable on R). Then for

fixed k € R,
< / 7 f(2)] de = / f(@)] de < oo,

‘/_(: ek f(x) du

where the first inequality holds by, say, Proposition IV.1.17(b) of IV.1. Riemann-

Stieltjes Integrals in my online notes for Complex Analysis 1 (MATH 5510), and
the equality holds since |e=***| = 1. So ™™ f(x) is integrable and in L'(R).

Definition 4.11.1. Let f € L'(R). The function

fzkx
Fy =) == [ o
is the Fourier transform of f.
Example 4.11.1(b). For f(z) = ¢ we have
1
Z — F(e® _/ —ikr —x dx
(=7 )


http://faculty.etsu.edu/gardnerr/5510/notes/IV-1.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/IV-1.pdf
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—e_k2/4/ e du = —
V2T o V2T
since [~ e dr = /7.

2 1 2
—k2/4 —k2/4
e T=—¢
\/— \/§

Note. It follows directly from the definition of Fourier transform that .% is linear,

as follows.

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous

function.

Note. Since equation (4.11.3) is independent of k, then the proof of Theorem

A

4.11.2 actually shows that .Z(f) = f is uniformly continuous on R.

Theorem 4.11.3. If fy, fo,... € L'(R) and [°_|fu(z) — f(z)|dz = || f — f1 — 0
as n — oo then the sequence of Fourier transforms {f,} converges to f uniformly

on R.

Theorem 4.11.4. The Riemann-Lebesgue Theorem.
If f € L'(R) then limy ., |f(k)| = 0.

Note. The space 6y(RR) of all continuous functions on R satisfying limy,| .« f(z) =
0 is a normed linear space with norm ||f||cc = sup,eg |f(2)|. Theorems 4.11.1 to

4.11.4 show that the Fourier transform is a continuous linear operator from L!(R)

to Co(R), Z : L (R) — % (R).
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Note. The following result follows directly from the definition of Fourier transform.

Theorem 4.11.5. Let f € L'(R). Then

(a) F{f(x)} = Z{f(~2)} (conjugate),

(b) F{f(z —y)} = F{f(x)}e " (shifting),

(c) F{f(ox)} = (1/a)F{f(x/a)}, @ > 0 (scaling), and

(d) F{c"f(x)} = F{f(x — a)} (translation).

Theorem 4.11.6. If f is a continuous piecewise differentiable function, f, f’ €

L'(R), and limy,| o f(z) = 0 then F{f'} = ik.Z{f}.
Note. By induction, we have the following corollary.

Corollary 4.11.1. If f is a continuous piecewise n-times differentiable function,
where f, f', f",..., f™ € LYR), and lz'm|m|_>oof(k)(x) =0fork=0,1,...,n—1
then .F{fM} = k"7 {f}.

Definition. The convolution of f,g € L*(R) is (now) defined as

1 o0
o)) = 2= [ s =gl du
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Note. The above definition varies from the definition of convolution gives in “Sec-
tion 2.15. Convolution” in that a factor of 1/4/27 is introduced. This allows us
to state a clear result concerning the Fourier transformation of a convolution as

follows.

Theorem 4.11.7. Convolution Theorem.

Let f,g € LY(R). Then .F{f * g} = F{f}F{g}.

Note. We want to extend the Fourier transform to L*(R). First, we need a

preliminary result. Recall that the norm on L*(R) is || flla = { [ |f(2)]? dm}l/ ?

Theorem 4.11.8. Let f be a continuous function on R vanishing outside a

bounded interval. Then f =€ L*(R) and || f|l2 = ||f]|.

Note. The space of all continuous functions on R which vanish outside a bounded
interval is dense in L*(R) (see Theorem 7.12 of my online Real Analysis [MATH
5210/5220] notes on 7.4. Approximation and Separability). Theorem 4.11.8 shows
that .# maps this space of functions to L?(R) in a distance preserving way (such a

map is called an isometry). So with § = ¢, if || fi — fa]|2 < J then

IZ{f1} — F{fo o= Ifi — fol <e.

That is, .Z is a continuous mapping from the space to L*(R). Since .Z is linear by
Theorem 4.11.1, then there is a unique extension of .# from this space (which is

dense in L?(R)) to L?(R). This allows us to extend .# to L*(R), as follows.


http://faculty.etsu.edu/gardnerr/5210/notes/7-4.pdf
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Definition 4.11.2. Let f € L*(R) and let {¢,} be a sequence of continuous
functions with compact support which converges to f in L?(R); that is, || f —n|l2 —
0 (this can be done since the continuous function vanishing outside a bounded
interval are dense in L?(R)). The Fourier transform of f is f = lim,,_.~ P, where

the limit is with respect to the norm in L*(R).

Note. In Definition 4.11.1 (the Fourier transformation of an L!(R) function), a
pointwise definition of .Z{f} is given (that is, f(k) is defined for k € R). In
Definition 4.11.2 (the Fourier transform of an L?*(R) function) we use convergence
with respect to the L2(R) norm. So f is not determined at individual points, but
only “up to” sets of measure zero. So for f

inLY(R) N L%(R) we may not have f(k) = f (where we use Definition 4.11.1 to find
f(k) and Definition 4.11.2 to find f) but we will have that || f(k) = f|» = 0; that
is, f(k) is in the same equivalence class in L2(R) as is f so that as elements of

LY(R) N L(R) we would still write “f(k) = f.”

Note. The next result shows that Theorem 4.11.8 also holds for the Fourier trans-
form on L%(R).

Theorem 4.11.9. Parseval’s Relation.

If f € L*(R) then || fllo = || /]

Note. Notice that Parseval’s Relation implies that if f € L2(R) then f € L*(R).
The following allows us to express the Fourier transform on L*(R) as a limit of

definite integrals.
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Theorem 4.11.10. Let f € L*(R). Then

¢ - —ikx
0= Jiy e | st

where the convergence is with respect to the norm in L*(R).

Note. Next, we want to define the inverse Fourier transformation on L?(R). We

need a theorem and a “technical lemma” first.

Theorem 4.11.11. Weak Parseval’s Relation.

If f,g € L*(R) then
/ " f(@)i(a) dr = / " f(@)g(a) da

Lemma 4.11.1. Let f € L*(R) and let g = ? Then f = g.
Note. We can now define the inverse Fourier transform on L*(R).

Theorem 4.11.12. Inversion of Fourier Transform on L*(R).

Let f € L*(R). Then

where the convergence is with respect to the norm in L?(RR).



4.11. The Fourier Transform 7

Note. Since elements of L?(R) are equivalence classes and we have defined the
Fourier transform for f € LY(R) pointwise (see Definition 4.11.1), then for f €
LY(R) N L*(R) we have the following.

Corollary 4.11.2. Let f € L'(R) N L?(R). Then the equality

f .CC zkxf

7 ).

holds almost everywhere for x € R.

Definition For f € L'(R) N L*(R), define the inverse Fourier transform

F k) = - / & f (k) di

2m

where f(z) = F{f(x)} e kT f(x)

7

Theorem 4.11.13. General Persaval’s Relation.

If f,g € L>(R), then
/_ F(@)g(x) de = / F (k)G dk

Note. For f € L*(R), the previous theorems of this section imply the following.
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Theorem 4.11.14. Plancherel’s Theorem.
For every f € L2(R) there exists f € L%(R) such that:

1 2 —zkaz
(a) Tf f € L'(R) N L%(R) then f(k M/ o
) 1
b k) — — e ™% f(z)dz|| — 0 and e!he —
) 70 - o= [ er@an] —vad |50 - o [y ae] o
(©) I1£ll2 = Ifll2.

(d) The mapping f — f is a Hilbert space isomorphism of L(R) onto L2(R).

Note. Recall that the adjoint 7™ of a bounded operator T" on a Hilbert space H is
defined by the relation (T'z,y) = x,T*y) for all z,y € H (see Definition 4.4.1). A
bounded operator T' is unitary if 7T = TT* = T, that is, (I"Tx,z) = (Tz,Tx) =
(x,z) for all x (see Definition 4.5.4 and Theorem 4.5.9).

Theorem 4.11.15. The Fourier transform is an unitary operator on L?(R).

Note. We can also define a Fourier transform on L*(R") as

where k = (ki,ko,...,ky) and © = (x1,29,...,2,) are in R"” and ki = kyz; +
koxy + - -+ + k,x,. The extension to L?(R") is possible and must of the theory of
this section extends to L?(R"), such as the Inversion Theorem and the Plancherel

Theorem.
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Note. In Section 5.11 (included as a supplement to these notes) we present ap-
plications of the Fourier transform to ordinary differential equations and integral

equations.
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