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Section 4.11. The Fourier Transform

Note. In this section we define the Fourier transform, initially on L1(R) and later

on L2(R). We discuss properties in both settings.

Note. Let f ∈ L1(R) (that is, let f be measurable and integrable on R). Then for

fixed k ∈ R,∣∣∣∣∫ ∞

−∞
e−ikxf(x) dx

∣∣∣∣ ≤ ∫ ∞

−∞
|e−ikxf(x)| dx =

∫ ∞

−∞
|f(x)| dx < ∞,

where the first inequality holds by, say, Proposition IV.1.17(b) of IV.1. Riemann-

Stieltjes Integrals in my online notes for Complex Analysis 1 (MATH 5510), and

the equality holds since |e−ikx| = 1. So e−ikxf(x) is integrable and in L1(R).

Definition 4.11.1. Let f ∈ L1(R). The function

F{f} = f̂(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x) dx

is the Fourier transform of f .

Example 4.11.1(b). For f(x) = e−x2

we have

F (f) = F (e−x2

) =
1√
2π

∫ ∞

−∞
e−ikxe−x2

dx

=
1√
2π

∫ ∞

−∞
e−(x2+ikx) dx =

1√
2π

∫ ∞

−∞
e−(x2+ikx−k2/4−k2/4 dx

=
1√
2π

e−k2/4
∫ ∞

−∞
e−(x+ik/2)2 dx let u = x + ik/2, so du = dx

http://faculty.etsu.edu/gardnerr/5510/notes/IV-1.pdf
http://faculty.etsu.edu/gardnerr/5510/notes/IV-1.pdf
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1√
2π

e−k2/4
∫ ∞

−∞
e−u2

du =
1√
2π

e−k2/4√π =
1√
2
e−k2/4

since
∫ ∞
−∞ e−x2

dx =
√

π.

Note. It follows directly from the definition of Fourier transform that F is linear,

as follows.

Theorem 4.11.2. The Fourier transform of an integrable function is a continuous

function.

Note. Since equation (4.11.3) is independent of k, then the proof of Theorem

4.11.2 actually shows that F (f) = f̂ is uniformly continuous on R.

Theorem 4.11.3. If f1, f2, . . . ∈ L1(R) and
∫ ∞
−∞ |fn(x)−f(x)| dx = ‖fn−f‖1 → 0

as n → ∞ then the sequence of Fourier transforms {f̂n} converges to f̂ uniformly

on R.

Theorem 4.11.4. The Riemann-Lebesgue Theorem.

If f ∈ L1(R) then lim|k|→∞ |f̂(k)| = 0.

Note. The space C0(R) of all continuous functions on R satisfying lim|x|→∞ f(x) =

0 is a normed linear space with norm ‖f‖∞ = supx∈R |f(x)|. Theorems 4.11.1 to

4.11.4 show that the Fourier transform is a continuous linear operator from L1(R)

to C0(R), F : L1(R) → C0(R).



4.11. The Fourier Transform 3

Note. The following result follows directly from the definition of Fourier transform.

Theorem 4.11.5. Let f ∈ L1(R). Then

(a) F{f̂(x)} = F{f(−x)} (conjugate),

(b) F{f(x− y)} = F{f(x)}e−iky (shifting),

(c) F{f(αx)} = (1/α)F{f(x/α)}, α > 0 (scaling), and

(d) F{eiαxf(x)} = F{f(x− α)} (translation).

Theorem 4.11.6. If f is a continuous piecewise differentiable function, f, f ′ ∈

L1(R), and lim|x|→∞ f(x) = 0 then F{f ′} = ikF{f}.

Note. By induction, we have the following corollary.

Corollary 4.11.1. If f is a continuous piecewise n-times differentiable function,

where f, f ′, f ′′, . . . , f (n) ∈ L1(R), and lim|x|→∞f (k)(x) = 0 for k = 0, 1, . . . , n − 1

then F{f (n)} = inknF{f}.

Definition. The convolution of f, g ∈ L1(R) is (now) defined as

(f ∗ g)(x) =
1√
2π

∫ ∞

−∞
f(x− u)g(u) du.
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Note. The above definition varies from the definition of convolution gives in “Sec-

tion 2.15. Convolution” in that a factor of 1/
√

2π is introduced. This allows us

to state a clear result concerning the Fourier transformation of a convolution as

follows.

Theorem 4.11.7. Convolution Theorem.

Let f, g ∈ L1(R). Then F{f ∗ g} = F{f}F{g}.

Note. We want to extend the Fourier transform to L2(R). First, we need a

preliminary result. Recall that the norm on L2(R) is ‖f‖2 =
{∫ ∞

−∞ |f(x)|2 dx
}1/2

.

Theorem 4.11.8. Let f be a continuous function on R vanishing outside a

bounded interval. Then f̂ =∈ L2(R) and ‖f̂‖2 = ‖f‖2.

Note. The space of all continuous functions on R which vanish outside a bounded

interval is dense in L2(R) (see Theorem 7.12 of my online Real Analysis [MATH

5210/5220] notes on 7.4. Approximation and Separability). Theorem 4.11.8 shows

that F maps this space of functions to L2(R) in a distance preserving way (such a

map is called an isometry). So with δ = ε, if ‖f1 − f2‖2 < δ then

‖F{f1} −F{f2}‖2 = ‖f̂1 − f̂2‖ < ε.

That is, F is a continuous mapping from the space to L2(R). Since F is linear by

Theorem 4.11.1, then there is a unique extension of F from this space (which is

dense in L2(R)) to L2(R). This allows us to extend F to L2(R), as follows.

http://faculty.etsu.edu/gardnerr/5210/notes/7-4.pdf
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Definition 4.11.2. Let f ∈ L2(R) and let {ϕn} be a sequence of continuous

functions with compact support which converges to f in L2(R); that is, ‖f−ϕn‖2 →

0 (this can be done since the continuous function vanishing outside a bounded

interval are dense in L2(R)). The Fourier transform of f is f̂ = limn→∞ ϕ̂n, where

the limit is with respect to the norm in L2(R).

Note. In Definition 4.11.1 (the Fourier transformation of an L1(R) function), a

pointwise definition of F{f} is given (that is, f̂(k) is defined for k ∈ R). In

Definition 4.11.2 (the Fourier transform of an L2(R) function) we use convergence

with respect to the L2(R) norm. So f̂ is not determined at individual points, but

only “up to” sets of measure zero. So for f

inL1(R)∩L2(R) we may not have f̂(k) = f̂ (where we use Definition 4.11.1 to find

f(k) and Definition 4.11.2 to find f̂) but we will have that ‖f̂(k) = f̂‖2 = 0; that

is, f̂(k) is in the same equivalence class in L2(R) as is f̂ so that as elements of

L1(R) ∩ L2(R) we would still write “f̂(k) = f̂ .”

Note. The next result shows that Theorem 4.11.8 also holds for the Fourier trans-

form on L2(R).

Theorem 4.11.9. Parseval’s Relation.

If f ∈ L2(R) then ‖f̂‖2 = ‖f‖2.

Note. Notice that Parseval’s Relation implies that if f ∈ L2(R) then f̂ ∈ L2(R).

The following allows us to express the Fourier transform on L2(R) as a limit of

definite integrals.
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Theorem 4.11.10. Let f ∈ L2(R). Then

f̂(k) = lim
n→∞

1√
2π

∫ n

−n

e−ikxf(x) dx

where the convergence is with respect to the norm in L2(R).

Note. Next, we want to define the inverse Fourier transformation on L2(R). We

need a theorem and a “technical lemma” first.

Theorem 4.11.11. Weak Parseval’s Relation.

If f, g ∈ L2(R) then ∫ ∞

−∞
f(x)ĝ(x) dx =

∫ ∞

−∞
f̂(x)g(x) dx.

Lemma 4.11.1. Let f ∈ L2(R) and let g = f̂ . Then f = ĝ.

Note. We can now define the inverse Fourier transform on L2(R).

Theorem 4.11.12. Inversion of Fourier Transform on L2(R).

Let f ∈ L2(R). Then

f(x) = lim
n→∞

1√
2π

∫ n

−n

eikxf̂(k) dk

where the convergence is with respect to the norm in L2(R).
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Note. Since elements of L2(R) are equivalence classes and we have defined the

Fourier transform for f ∈ L1(R) pointwise (see Definition 4.11.1), then for f ∈

L1(R) ∩ L2(R) we have the following.

Corollary 4.11.2. Let f ∈ L1(R) ∩ L2(R). Then the equality

f(x) =
1√
2π

∫ ∞

−∞
eikxf̂(k) dk

holds almost everywhere for x ∈ R.

Definition For f ∈ L1(R) ∩ L2(R), define the inverse Fourier transform

F−1{f̂(k)} =
1

2π

∫ ∞

−∞
eikxf̂(k) dk

where f̂(x) = F{f(x)} =
1√
2π

∫ ∞

−∞
e−ikxf(x) dx.

Theorem 4.11.13. General Persaval’s Relation.

If f, g ∈ L2(R), then ∫ ∞

−∞
f(x)g(x) dx =

∫ ∞

−∞
f̂(k)ĝ dk.

Note. For f ∈ L2(R), the previous theorems of this section imply the following.
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Theorem 4.11.14. Plancherel’s Theorem.

For every f ∈ L2(R) there exists f̂ ∈ L2(R) such that:

(a) If f ∈ L1(R) ∩ L2(R) then f̂(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x) dx.

(b)

∥∥∥∥f̂(k)− 1√
2π

∫ n

−n

e−ikxf(x) dx

∥∥∥∥
2
→ 0 and

∥∥∥∥f(k)− 1√
2π

∫ n

−n

eikxf̂(x) dx

∥∥∥∥
2
→ 0

as n →∞.

(c) ‖f‖2 = ‖f̂‖2.

(d) The mapping f 7→ f̂ is a Hilbert space isomorphism of L2(R) onto L2(R).

Note. Recall that the adjoint T ∗ of a bounded operator T on a Hilbert space H is

defined by the relation (Tx, y) = x, T ∗y) for all x, y ∈ H (see Definition 4.4.1). A

bounded operator T is unitary if T ∗T = TT ∗ = I; that is, (T ∗Tx, x) = (Tx, Tx) =

(x, x) for all x (see Definition 4.5.4 and Theorem 4.5.9).

Theorem 4.11.15. The Fourier transform is an unitary operator on L2(R).

Note. We can also define a Fourier transform on L1(Rn) as

f̂(k) =
1

(2π)n/2

∫
Rn

e−ikxf(x) dx

where k = (k1, k2, . . . , kn) and x = (x1, x2, . . . , xn) are in Rn and kẋ = k1x1 +

k2x2 + · · · + knxn. The extension to L2(Rn) is possible and must of the theory of

this section extends to L2(Rn), such as the Inversion Theorem and the Plancherel

Theorem.



4.11. The Fourier Transform 9

Note. In Section 5.11 (included as a supplement to these notes) we present ap-

plications of the Fourier transform to ordinary differential equations and integral

equations.
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