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Section 4.9. Eigenvalues and Eigenvectors

Note. In this section we consider eigenvalues and eigenvectors for linear operators

and define the spectrum of an operator. We will see some parallel behaviors between

results for matrices and operators.

Definition 4.9.1. A (complex) number λ is an eigenvalue of linear operator A if

there exists vector u 6= 0 such that Au = λu. Such a vector u is an eigenvector of

A.

Definition 4.9.2. Let A be an operator on a normed space. The operator Aλ =

(A − λI)−1 is the resolvent of A. The values of λ for which Aλ is defined on the

whole space and is bounded are the regular points of A. The set of all λ which are

not regular in the spectrum of A. The eigenvalues of A (a subset of the spectrum)

is the point spectrum of A. The remainder of the spectrum (for which Aλ exists by

is unbounded) is the continuous spectrum.

Example 4.9.2. Let = C([a, b]) and u ∈ E. Define A : E → E as (Ax)(t) =

u(t)x(t). The resolvent of A is

(A − λI)−1 =
x(t)

u(t) − λ
.

Now Aλ is defined and bounded on all of E if λ is such that u(t) 6= λ for all t ∈ [a, b].

That is, if λ is not in the range of u then λ is a regular point of A. The points

in the range of u make up the spectrum of A. Only if u(t) is a constant function,

u(t) = λ, does A have eigenvalues.
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Theorem 4.9.1. The collection of all eigenvectors corresponding to one particular

eigenvalue of an operator is a vector space.

Definition 4.9.3. The vector space of the previous theorem is the eigenspace of

the eigenvalue λ. The dimension of the eigenspace of λ is the multiplicity of λ.

An eigenvalue of multiplicity one is simple (or non-degenerate). An eigenvalue of

multiplicity greater than one is multiple (or degenerate) and the number of linearly

independent eigenvectors is he degree of degeneracy.

Theorem 4.9.2. Let T be an invertible linear operator on E and let A be a linear

operator on E. Then A and TAT−1 have the same eigenvalues.

Note. Recall that the eigenvalues of a real symmetric matrix are real. This idea

is generalized as follows.

Theorem 4.9.3. All eigenvalues of a self adjoint operator on a Hilbert space are

real.

Note. The following two theorems give further motivation for the names “positive

operator” and “unitary operator.”
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Theorem 4.9.4. All eigenvalues of a positive operator are non-negative. All

eigenvalues of a strictly positive operator are positive.

Theorem 4.9.5. All eigenvalues of a unitary operator on a Hilbert space are

complex numbers of modulus 1.

Theorem 4.9.6. Eigenvectors corresponding to distinct eigenvalues of self adjoint

or unitary operator on a Hilbert space are orthogonal.

Theorem 4.9.7. For every eigenvalue λ of a bounded operator A, we have |λ| ≤

‖A‖.

Theorem 4.9.9. Let A be a self adjoint operator. Define m = inf‖x‖=1(Ax, x) and

M = sup‖x‖=1
(Ax, x). The spectrum of A lies in [m,M ]. Also m and M are in the

spectrum.
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