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Section 5.11. Applications of Fourier Transforms to

Ordinary Differential Equations and Integral Equations

Note. We now apply the Fourier transform to both (ordinary) differential equa-
tions and integral equations. In addition to some specific applications, we give
examples for ODEs (see Examples 5.11.3 and the next note) and integral equations

(see examples 5.11.5 and 5.11.7).

Note. Consider the nth order (nonhomogeneous) differential equation with con-
stant coefficients L(y) = f(z) where L is the nth order differential operator L =
an D" + a, D" '+ - + a1 D + ag for ag,ay,...,a, constants and f € L'(R) or
f € L*(R). Applying the Fourier transform to the ODE gives #{L(y)} = Z{f(x)}
or (by Theorem 4.11.6)

(n (i)™ + an_1 (ik)" ™ 4 - - - + ay (ikrao)g(k) = (k).

With polynomial p defined as p(z) = a,2"+a,_12" 1+ - -+a12+ag we have p(ik) =
§(k) = f(k). With polynomial p defined as p(z) = a,2" + A 12"+ a2 + ag
we have p(ik)j(k—f(k). So g(k) = ;;C((z]/i:)) = f(k)g(k) where §(k) = 1/p(ik). The
Convolution Theorem (Theorem 4.11.7) state that

FAf * g} = LT g} where (f * g)(x) = # / " flo — u)g(w) du.

Since we have #{y} = F{f}F{g} = F{f * g} then (since ¥ is one to one by
Theorem 4.11.14(d))
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provided g(x) = .Z Hag(k)} = .7 11/p(ik)} is known explicitly. Notice that this
gives a particular solution to the nonhomogeneous ODE: L(y) = f(x). the general
solution can be found using the general solution to the homogeneous ODE with
constant coefficients L(y) = 0; this ODE can be solved using matrix theory—see
my online notes for “A Second Course in Differential Equations” class (not an
official ETSU class, but some of the material is likely covered in ETSU’s Intro-
duction to Applied Math (4027/5027) on 7.5. Homogeneous Linear Systems with
Constant Coeflicients, 7.6. Complex Eigenvalues, 7.7. Repeated Eigenvalues, 7.8.

Fundamental Matrices, and 7.9. Nonhomogeneous Linear Systems.

2

u

e + o’u = f(z), where f € L*(R).
d2

Applying the Fourier transform we have % {__u + u} = Z{f(x)} or (by

dz?
Corollary 4.11.1)

Example 5.11.3. Consider the ODE —

—(ik)*u(k)Pa(k) = f(k) or (K* + o®)a(k) = f(k).

Hence u(k) = 5 f(k). Since (as stated on page 273 and which can be verified

k? + «
using the theory of residues (see my online notes for Complex Variables [MATH

4337/5337] on Chapter 6. Residues and Poles) that:
1

_ k= —alz|

V2 /_OO k2 + o2 2"
1 —alx| 1 :

so that . 2—6 = P rar So we now have by the Convolution Theorem
a o

(Theorem 4.11.7),

+ a? 200
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Since f is one to one by Theorem 4.11.14(d),

u(xr) = —

21&6_0”0' x f(z) = S /OO el f(4) dae.0

Example 5.11.4. Consider an infinite beam on an elastic foundation under a
prescribed vertical load W (x). The vertical deflection u(x) is described by the ODE
EIu™ + ku = W(z) where EI is the “fluxural rigidity” and k is the “foundation
modulus” of the beam. We assume W has compact support so that u, «’, u”, and
u" all tens to zero as |z| — oo. First, we rewrite the ODE as v 4 a*u = w(z)
where a* = k/EI and w(z) = W(x)/EI. Applying the Fourier transform gives
F{uDY + o' F {u} = .F{w} and by Corollary 4.11.1

1

(ik)*a(k) + a*a(k) = w(k) or a(k) = ol

(k).

Applying the inverse Fourier transform we get

a—1 l[)(k’) zkx
— dk
ule) =7 {k4+a4} Var ) /<;4+a4
eikaj
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where
1 [ e ik(z—E) 1 [ _
Gle.x) = / e dk:—/ cos(z — &)k dk
0

o7 k*+ ot T kt+ ot
where the last equality results from the Euler equation e’ = cos# + isin 6 and the

fact that sinf is an odd function. The last integral “can be evaluated by complex

contour integration,” as Debnath and Mikusinski state (see page 274) to give

L . . (alx =& w
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In particular, a point load of unit strength acting at point x = x, so that we use

the delta function w(x) = 6(x — xy), gives

u(r) = /OO d(& — x0)G(&, ) dE = G(zp,x).0

oo

Example 5.11.5. Consider the integral equation

/_ T K — Out) di + Ma(x) = f(2)

where K, f € L'(R) and the unknown function is u(z). This is a Fredholm integral

equation with convolution kernel. By the definition of convolution we have

¢L27T /_Oo K(x — tu(t) dt = (K = u)()

and by the Convolution Theorem (Theorem 4.11.7) we have

1 o .
ﬂ{—/ K(x —t)u(t)dt} = Z{K xu} = F{K}Z{u} = Ku.
V2T J-xo
So applying the Fourier transform to the integral equation gives

()
V2K (k) + A\

V2K (k)a(k) + Mi(k) = f(k) or a(k)

Therefore

ezkzx

f(k)

R i)
V2rK (k) + )\} Vo /_oo V21K (k) + A kit

u(k)=F Hu k) =" {

Example 5.11.6. The Hilbert Transform.

Consider the integral equation

%/ijf}ﬁzbm)
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where fy € Ll(R) and the above integral is the “Cauchy principle value”:

f(t) < f(t)
o —1 dt_l—@(/ . x—tdt)'

The function fy is called the Hilbert transform of f and is denoted fy(x) =
H{f(t)}. First we let g(x) = \/2/7/x so that (based on Debnath and Mikusinski’s

claim at the top of page 275)

/ ekt g ! /Oo e dx 1i sgn(—k) isgn(k)
= — = —ITT _ —
\/27‘(‘ T ) 56 T ™ & &

and the given integral equation becomes

71T x_tdt \[/ fOglz —t)dt = fxg= fulz).

Applying the Fourier transform and the Convolution Theorem (Theorem 4.11.7)
we have
TS x 9y = F{YF g} = [(R)g(k) = F{fu} = [u(k),

or

oy = Lo = O — s ()

Applying the inverse Fourier transform yields

@) = %{z’sgnw)fff(k)}:%_w [ st fuhye i
—1 o0

_ J—_ / i )ik“'dx:\/—Q_W ) )™ do
= / )e " d¢ where € =

\/—_ 0
%/ 3(R) fir (R)e € de = m/ (5% fur) (k)e ™™ de

— g}« F{fu}} = —F {F{g* fu}} by the Convolution Theorem

:—g*fﬂ—m/ (v — fH<£df—r/ 2/” £€) dé




5.11. Applications of Fourier Transforms 6

—1 [ fu(§)

T ) —E&
That is, f(x) = —{fu(&)} = —s{{f(t)}} and so (since f is an arbitrary
element of L*(R)) the Hilbert transform # satisfies 7! = —5# on L*(R). O

dg§ = —{ fu(&)}.
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