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Section 7.2. Basic Concepts and Equations of Classical

Mechanics

Note. We review some classical mechanics, including Lagrange’s equations of

motion.

Note. Let 7; be the position of particle ¢ and let F. be the force on this particle.

Then from Newton’s Second Law of Motion,
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where V; = = and 7; = (x;,y;, 2;) then V' is a potential energy func-
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tion. If a force field is irrotational (i.c., V x F = 0) and independent of time, it is

a conservative force field.

Note. The kinetic energy of the ith particle is
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With momentum p; = m;;, Newton’s Second Law is
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So from Newton’s Second Law,
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Note. The total energy F of a particle is the sum of its kinetic and potential
energies, £ =T + V (7, t). We assume V is independent of time. Then
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So FE is constant.

Definition. The Lagrangian function L of the above system of particles is the

difference of the kinetic and potential energies:
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Note/Definition. Since V' is independent of time, £ = 5 and since 1" depends
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These are the Lagrange equations of motion.
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