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Section 7.3. Basic Concepts and

Postulates of Quantum Mechanics

Note. In this section we state several definitions and five postulates for our ap-

proach to quantum mechanics.

Note. A blackbody is a perfect absorber (and emitter) of radiation. “Since it

reflects no light at all, it must appear perfectly black unless it is emitting light in

the visible region of the spectrum” (page 43 of E. A. Anderson, Modern Physics

and Quantum Mechanics, W. B. Saunders, 1971). The radiation is emitted with

intensity (according to Planck’s formula)

I(λ, T ) =
c1
λ5

1

ec2/(λT ) − 1

where c1 and c2 are empirical constants. The graph of I(λ, T ) for various values of

T is:

From https://www.e-education.psu.edu/astro801/content/l3 p5.html
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Note. Planck also postulated that energy is not emitted (or absorbed) over a

continuum, but instead only in discrete quantities of energy E = hv = }ω where

h = 6.625 × 10−27 erg sec, and } = h/(2π).

Note. Classically Rutherford’s model of the atom involved electrons orbiting a nu-

cleus. However, according to Maxwell’s equation, the electrons should be emitting

energies and therefore the orbit would decay and crash into the nucleus. However,

if the energy is only radiated in quantum units, this problem is avoided. We now

state our first postulate.

Postulate I. (The State Vector.)

Every possible state of a given system in quantum mechanics corresponds to a

separable Hilbert space over the complex scalar field. A state of the system is

represented by a nonzero vector in the space, and every nonzero scalar multiple of

a state vector represents the same state (and conversely).

Note. The state vector to which the state of the system corresponds at time t

is denoted ψ(x, t) and is the time dependent state vector. Information about the

system can be obtained from the vector ψ(x, t).
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Note. We denote a state vector ψ(x) as ψ(x) = 〈x|ψ〉 and ψ(x) = 〈ψ|x〉. We

impose a normalizing condition

∫

ψ(x)ψ(x) dx =

∫

|ψ(x)|2 dx = 1

or
∫

〈ψ|x〉〈x|ψ〉 dx =

∫

|〈ψ|x〉|2 dx = 1.

We also denote this as 〈ψ|ψ〉 = 〈ψ,ψ〉 = 1.

Note. The inner product of two state vectors |ϕ〉 and |ψ〉 is

〈ϕ|ψ〉 −

∫

ϕ(x)ψ(x) dx =

∫

〈ϕ|x〉〈x|ψ〉 dx.

Notice 〈ϕ|ψ〉 = 〈ψ|ϕ〉.

Definition. State vectors |ϕ〉 and |ψ〉 are orthogonal if 〈ϕ|ψ〉 = 0. A set {|ψ1〉, |ψ2〉, . . .}

is orthonormal if 〈ψi|ψj〉 = δij.

Note. If {|ψi〉} is an orthonormal basis then all state satisfy |ψ〉 =
∑

i

ci |ψi〉 where

ci = 〈ψi|ψ〉. This is the Principle of Superposition.

Note. The state vector ψ(x, t) is sometimes called the wave function. We will be

concerned with the time evolution of ψ.
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Postulate II. (Observable Operators and Their Values)

(a) To every physical observable, there corresponds in the Hilbert space a Hermi-

tian operation Â which has a complete set of orthonormal eigenvectors {ψn}

with corresponding eigenvalues {λn} such that Âψn = λnψn. Conversely, to

each such operator there corresponds some physical observable.

(b) The only possible values of a physical observable are the various eigenvalues.

Note. The eigenvalues of Â are real since Â is Hermitian. The eigenvalues of the

operator can be discrete, continuous, or a combination of the two (see page 350).

Definition. The commutator of operators Â and B̂ is [Â, B̂] = ÂB̂ − B̂Â.

Note. Let x̂ be the position observable and p̂ = −i}∂/∂x be the momentum

operator. Then

[x̂, p̂− ψ = (x̂p̂− p̂x̂)ψ − x̂

(

−i}
∂φ

∂x

)

− p̂(x̂ψ)

= −i}x̂
∂ψ

∂x
+ i}

(

ψ + x
∂ψ

∂x

)

= i}ψ

and so [x̂, p̂] = i}.

Definition. Two observables are complementary if their commutator is nonzero.

They are compatible if the commutator is 0.
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Note. Position and momentum are complementary. Momentum p̂ = −i}∂/∂x and

energy B̂ = T̂ = (1/(2m))p̂2 = (−}/(2m))(∂2/∂x2) are compatible:

[p̂, T̂ ]ψ =

[

−i}
∂

∂x
,−

}

2m

∂2

∂x2

]

ψ =

(

−i}3

2m

∂3

∂x3
+
i}3

2m

∂3

∂x3

)

ψ = 0.

Therefore energy and momentum CAN be determined simultaneously (for a free

particle).

Postulate III. (Correspondence Principle)

A quantum observable operator corresponding to a dynamical variable is obtained

by replacing the canonical variable in classical mechanics by the corresponding

quantum mechanical operator.

Note. See page 353 for a list of some operators.

Postulate IV. (Quantization)

Every pair of canonically conjugate observable operators (that is, operators de-

pendent classically only on p [momentum] and q [position]) satisfies the following

Heisenberg commutation relations:

[q̂m, q̂n] = 0 = [p̂m, p̂n]

[q̂m, p̂n] = i}δ̂mn

where q̂m is the position operator and p̂m is the momentum operator.
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Note. We now state two more definitions, two theorems without proof, and another

postulate.

Definition 7.3.1. The expectation value 〈Â〉 of an observable operator Â is the

state ψ(x) of a physical system is defined by

〈Â〉 =
〈ψ, Âψ〉

(ψ,ψ)
=

〈ψ|Â|ψ〉

〈ψ|ψ〉
.

If the state ψ is normalized, then the expectation value is

〈Â〉 = (ψ, Âψ) = 〈ψ|Â|ψ〉.

Definition 7.3.2. The root-mean-square deviation is defined by the square root of

the expectation value of (Â− 〈Â〉)2 in the state ψ in which 〈Â〉 is computed.

Theorem 7.3.1.

(i) (∆Â)2 = 〈Â2〉 − 〈Â〉2,

(ii) 〈Â2〉 = ‖Âψ‖2.

Theorem 7.3.2. A necessary and sufficient condition for a physical system to be

an eigenstate of an observable Â is ∆Â = 0.
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Postulate V. (Outcome of Quantum Measurement)

If an observable operator Â has eigenbasis {ψn} with the corresponding eigenvalues

{λn} then the probability that the measurement will yield the eigenvalue λn of Â

is P (λn) = |〈ψn|ψ〉|
2 where ψ is normalized.

Note. We wrap up with two more ideas. The first, the Heisenberg Uncertainty

Principle, is from Section 7.4 and the second, our final postulate for quantum

mechanics (the Schrödinger Equation), is from Section 7.5.

Theorem 7.4.1. The Uncertainty Principle.

If Â and B̂ are Hermitian then

∆Â∆B̂ >
1

2

∣

∣

∣

∣

1

i
〈[Â, B̂]〉

∣

∣

∣

∣

where 〈[Â, B̂]〉 = 〈(ψ, (ÂB̂ − B̂Â)ψ)〉.

Note. The Uncertainty Principle implies ∆xj∆pj ≥ }/2.

Postulate VI.

(a) (Hamiltonian Operator.) For every physical system ther exists a linear Her-

mitian operator Ĥ, the Hamiltonian Operator, which represents the observable

operator corresponding to the total energy of the system.
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(b) (Schrödinger’s Equation.) If a physical system is not disturbed by any

experiment, the Hamiltonian operator Ĥ determines the time development of

the state vector of the system Ψ(~r, t) through the partial differential equation

i}
∂Ψ

∂t
= ĤΨ(~r, t).

This is called the time-dependent Schrödinger equation.
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