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Chapter I. Basic Ideas of

Hilbert Space Theory

Note. The goal of this chapter is to introduce the idea of an infinite dimensional

Hilbert space. In Section I.1 we review properties of vector spaces, in Section I.2 we

review inner product spaces, and in Section I.3 we consider metric spaces. Hilbert

spaces are introduced in Section I.4 and every separable Hilbert space is shown to

be isomorphic to `2. In Section I.5 awe introduce a state function Ψ(t) which is

an element of a Hilbert space and a wave function ψ(x, t) as the description of a

particle moving in one dimension in the presence of a potential well.

Section I.1. Vector Spaces

Note. In this section we review several topics from sophomore level Linear Algebra

(MATH 2010). Our real reason for this is to introduce the notation we use in this

text for vectors and vector spaces.

Definition I.1.1. Any set V (the elements of which are called vectors) on which the

operations of vector addition and multiplication by a scalar (the scalars are from

some field F) are defined and satisfy the axioms listed below is a vector space or

linear space (or, less frequently, linear manifold). The operation of vector addition

is a mapping form V × V → V where we denote the image of (f, g) ∈ V × V under

this mapping is denoted f + g ∈ V . The operation of multiplication by scalar a ∈ F
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is a mapping of F × V where the image of (a, f) ∈ F × V under the mapping is

denoted af ∈ V . These two operations of vector addition and scalar multiplication

are required to satisfy the following, which we list as axioms. For all f, g, h ∈ V

and for all a, b ∈ F:

Axiom 1. f + g = g + f (Commutivity of vector addition),

Axiom 2. (f + g) + h = f + (g + h) (Commutivity of vector addition),

Axiom 3. There is a vector 0, called the zero vector, such that g satisfies f+g = f

is and only if g = 0,

Axiom 4. a(f+g) = af+ag (Distribution of scalar addition over scalar addition),

Axiom 5. (a+ b)f = af + bf (Distribution of scalar addition over scalar multipli-

cation),

Axiom 6. (ab)f = a(bf) (Distribution of scalar addition over scalar multiplica-

tion),

Axiom 7. af = f where a denotes the unit element (that is, the multiplicative

identity) in the field.

We denote the vector space, along with these operations, as V . We call V a vector

space over the field F. If F = R or F = C then the space is a real vector space or a

complex vector space, respectively.

Note. Notice that we distinguish scalar 0 from vector 0 by using a bold faced font

for the zero vector.
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Example. Rn and Cn are examples of vector spaces where the vectors are n-tuples

of scalars (and fixed n ∈ N). Similarly, F
n is a vector space. Other examples of

vector spaces are given in Exercises I.1.3 (C(R1), the infinite-dimensional vector

space of all complex-valued continuous functions defined on R) and I.1.7 (P∞ the

vector space of all polynomials, and Pn the vector space of all polynomials of degree

at most n).

Theorem I.1.1. Every vector space V has only one zero vector 0, and each element

f of a vector space has one and only one additive inverse (−f). For any f ∈ V , we

have 0f = 0 and (−1)f = (−f).

Definition I.1.2. The vectors f1, f2, . . . , fn ∈ V are linearly independent if for

scalars c1, c2, . . . , cn ∈ F, the equation c1f1 + c2f2 + · · · + cnfn = 0 implies c1 =

c2 = · · · = cn = 0. A subset S ⊂ V is a set of linearly independent vectors if any

finite number of different vectors from S are linearly independent. The dimension

of vector space V is the least upper bound (which can be finite or positive infinity)

of the set of all integers v for which there are v linearly independent vectors in V .

Note. The previous definition of “dimension” of V is a bit unconventional. It is

more common to show that all bases of a vector space are of the same cardinality

and to define this common cardinality as the dimension. We resolve Prugovečki’s

approach with the conventional approach for finite dimensional vector spaces in the

next two theorems.
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Theorem I.1.2. If the vector space V is n dimensional, where n ∈ N, then there is

at least one set f1, f2, . . . , fn of linearly independent vectors, and each vector f ∈ V

can be expanded as f = a1f1 +a2f2 + · · ·+anfn, there the coefficients a1, a2, . . . , an

are uniquely determined by f .

Definition I.1.3. The (finite or infinite) set S spans vector space V if every

f ∈ V can be written as a linear combination f = a1h1 + a2h2 + · · · + anhn where

h1, h2, . . . , hn ∈ S and a1, a2, . . . , an ∈ F. If S is in addition a set of linearly

independent vectors, then S is a basis of V .

Note. We now show that any two bases for a finite dimensional vector space are

of the same size. To give a completely rigorous proof, we need a result not in

Prugovečki. The following is from Real Analysis with an Introduction to Wavelets,

D. Hong, J. Wang, and R. Gardner, Elsevier Press (2005). It appears as Lemma

5.1.1 in the book and holds in an arbitrary field.

Lemma I.1.A. Consider the homogeneous system of equations

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

... . . . ...

am1x1 + am2x2 + · · · + amnxn = 0

with coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and unknowns xk (1 ≤ k ≤ n) from

field F. If n > m then the system has a nontrivial solution (that is, a solution

x1, x2, . . . , xn where xk 6= 0 for some 1 ≤ k ≤ n).
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Theorem I.1.3. If the set {g1, g2, . . . , gn} is a basis of n-dimensional vector space

V (where n ∈ N), then m = n. That is, all bases of an n-dimensional vector space

are of the same size n.

Definition I.1.4. A subset V1 of a vector space V is a vector subspace (or linear

subspace) of V if it is closed under the vector operations; that is, if f + g ∈ V1 and

af ∈ V1 whenever f, g ∈ V1 and for any scalar a. A vector subspace V1 of V is

nontrivial if it is different from V and different from {0}.

Note. We now show that if V is an n-dimensional vector space (where n ∈ N) with

real scalars, then V is isomorphic to R
n. If V is n-dimensional with complex scalars,

then V is isomorphic to C
n More generally (though not shown in Prugovečki) is

that n-dimensional vector space V with scalars from field F is isomorphic to F
n. I

call this result the “Fundamental Theorem of Finite Dimensional Vector Spaces”

(a label introduced in the book Real Analysis with an Introduction to Wavelets,

mentioned above). In fact, a similar result holds for infinite dimensional vector

spaces (with some additional hypotheses), as we will see in Theorem I.4.7.

Definition I.1.5. Two vector spaces V1 and V2 over the same field are isomorphic

if there is a one to one mapping of V1 onto V2 which has the properties that if f2 and

g2 (where f2, g2 ∈ V2) are the images of f1 and g1 (where f1, g1 ∈ V1), respectively,

then for any scalar a, af2 is the image of af1 and f2 + g2 is the image of f1 + g1.
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Note. A simpler classification of the isomorphism of Definition I.1.4 is that the

mapping is a one to one and onto linear mapping. Now for our biggest result

concerning finite dimensional vector spaces.

Theorem I.1.4. The Fundamental Theorem of Finite Dimensional Vector

Spaces.

All complex (real) n-dimensional (n ∈ N) vector spaces are isomorphic to the vector

space C
n (or R

n in the case of real vector spaces).

Note. Since being isomorphic is an equivalence relation (see Exercise I.1.6), we

see that any two n-dimensional vector spaces over field F are isomorphic to each

other. Notice that it is meaningless to say that R
2 is isomorphic to C as vector

spaces, since a vector space isomorphism is only defined between vector spaces over

the same field. Notice Exercise I.1.2 and the use of the word “becomes.”

Note. Other proofs of The Fundamental Theorem of Finite Dimensional Vector

Spaces are available: (1) in my Linear Algebra (MATH 2010) notes which uses or-

dered bases (see http://faculty.etsu.edu/gardnerr/2010/c3s3.pdf and The-

orem 3.3.A), and (2) in Theorem 5.4.9 of Real Analysis with an Introduction to

Wavelets (see http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf).
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