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Section I.2. Euclidean (Pre-Hilbert) Spaces

Note. In this section we introduce vector spaces which admit an inner product.
Such a vector space is a Fuclidean space or inner product space (or less commonly, a
pre-Hilbert space). We could choose to deal with real vector spaces and real valued
inner products (as you do in Linear Algebra when you address dot products on
R™), but instead we will deal with complex vector spaces with complex valued inner
products. This is because of our intended applications to quantum mechanics. We
adopt Prugovecki’s notation that for z = a +ib € C (where a,b € R), the complex

conjugate is 2 = a — 1b.

Definition 1.2.1. An inner product (or scalar product) (- | -) on a complex vector
space V is a mapping of the set V x V into the scalar field C, where we denote the
image of (f,g) € V xV as (f | g) € C, which satisfies the following:

1. (f| f) >0forall f#0,

2. (f1g)=Cg|m),

3. {f | ag) = a(f | g), and

4. (flg+h)={flg) +(fIh),

for all f,g € V and for all a € C.



1.2. Euclidean (Pre-Hilbert) Spaces 2

Note. Progovecki comments of page 18 that mathematicians prefer the notation
(f,g) for an inner product ({f,g) is also a common notation) and that property
(3) of Definition 1.2.1 is often replace with (af | g) = a(f | g). The notation
we use, (f | g), was introduced by physicist P.A.M. Dirac in The Principles of
Quantum Mechanics, Oxford University Press (1930) (a copy is available online at
http://digbib.ubka.uni-karlsruhe.de/volltexte/wasbleibt/57355817/5735
5817 .pdf, accessed 11/22/2018).

Theorem 1.2.1. In a Euclidean space &, the inner product (f | g) satisfies the

relations:

(a) (af | g) = a*(f | g), and
(b) (f+g|hy=(f|h)+ (g]h)

for all f, g, h € £ and for every scalar a.

Example. Vector space C" with inner product defined for o = [ay, as, ..., a,]", 8 =

[bl,bz, ce ,bn]T e C" as
(o | B) = alby + azby + - - -+ a,by,

is a Euclidean space. We denote this space as £(n).
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Example. The previous example is a finite dimensional Euclidean space. An
infinite dimensional Euclidean space is given by the vector space C?z)(R) of all

continuous complex-valued functions f(x) defined on R which satisfy

/OO |f(33)|2d33 <ooand lim f(z)=0

r—300
00

where the inner product is

(1 g) = / " () de.

This is, in fact, an inner product (see Exercise 1.2.1); notice that it is not clear that
(f | g) is finite (though it is) and it is not clear that f + g satisfies the integrability

condition (though it does).

Note. As you know, we will use inner products to induce norms. A first step in

that direction is the following.

Theorem 1.2.2. Schwarz-Cauchy Inequality.

Any two elements f, g of a Euclidean space & satisfies

Il <{f1f)glg)
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Definition 1.2.2. A mapping of V to R, where we denote the image of f as || f]|,

is a norm if it satisfies the following:

1. | £l > 0 for f#0,
2. [|0]| = 0,
3. [laf]| = lalllf and

4. |[f + gll < [IfI+ llgll (the Triangle Inequality),

for all f,g € V and for all scalars a € C. A vector space which admits a norm is a

normed vector space (or normed linear space).

Note. The next result shows that every Euclidean space £ is in fact a normed

vector space.

Theorem 1.2.3. In a Euclidean space £ with inner product (f | g), the real-valued

function || f|| = \/(f | f) is a norm.

Note. In addition to using inner products to induce a norm, we can also (as
happens with dot products in R", as seen in Linear Algebra) use inner products to

define orthogonality and projections.
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Definition 1.2.3. In a Euclidean space £ two vectors f and g are orthogonal,
denoted f L g, if (f | g) = 0. Two subsets R and S of £ are orthogonal sets,
denoted S L R, if each vector in R is orthogonal to each vector in S. A set of
vectors from £ in which any two vectors are orthogonal is an orthogonal system
of vectors. A vector vector f is normalized (or is a unit vector) if ||f|| = 1. An
orthogonal system of vectors is an orthonormal system if each vector in the system

is normalized.

Note. The following theorem makes use of the Gram-Schmidt Process. For notes
on this process at the Linear Algebra level, see http://faculty.etsu.edu/gardnerr
/2010/c6s2.pdf. For notes at the graduate level, see these notes from Theory
of Matrices (MATH 5090): http://faculty.etsu.edu/gardnerr/5090/notes/
Chapter-2-2.pdf.

Theorem 1.2.4. If S is a finite of countably infinite set of vectors in a Euclidean
space £ and V is the vector subspace of £ spanned by S, then there is an orthonor-
mal system T of vectors which spans V; that is, for which span(7) = V (that is,
the set of all linear combinations of elements of T'; Prugovecki denotes the space of

T as (T)). T is a finite set when S is a finite set.

Note. We now define an isomorphism between inner product spaces and prove a

not-too-surprising result for finite dimensional inner product spaces.
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Definition 1.2.4. Two Euclidean spaces & and & with inner products (- | -); and
(- | -(2, respectively, are isomorphic (or unitarily equivalent) if there is a mapping
of & onto &, such that if fi, g1 € &1, fo € & is the image of f1, and go € & is the
image of g; under the mapping then f; + ¢; is mapped to fo + ¢o, afi is mapped
to afy for all @ € C, and (f1 | g1)1 = (f2 | 92)2- The mapping (which is an inner

product isomorphism) is called a unitary transformation.

Theorem 1.2.5. All complex Euclidean n-dimensional spaces are isomorphic to

(%(n) and consequently mutually isomorphic.

Note. Of course, Theorem 1.2.5 has an analogous result for real inner product

spaces of dimension n.

Theorem 1.2.6. A unitary transformation from Euclidean space £, onto Euclidean

space & has a unique inverse mapping which is a unitary transformation of & onto

&l

Note. A proof of Theorem 1.2.6 is to be given in Exercise [.2.A.
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