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Section I.2. Euclidean (Pre-Hilbert) Spaces

Note. In this section we introduce vector spaces which admit an inner product.

Such a vector space is a Euclidean space or inner product space (or less commonly, a

pre-Hilbert space). We could choose to deal with real vector spaces and real valued

inner products (as you do in Linear Algebra when you address dot products on

Rn), but instead we will deal with complex vector spaces with complex valued inner

products. This is because of our intended applications to quantum mechanics. We

adopt Prugovečki’s notation that for z = a + ib ∈ C (where a, b ∈ R), the complex

conjugate is z∗ = a − ib.

Definition I.2.1. An inner product (or scalar product) 〈· | ·〉 on a complex vector

space V is a mapping of the set V ×V into the scalar field C, where we denote the

image of (f, g) ∈ V × V as 〈f | g〉 ∈ C, which satisfies the following:

1. 〈f | f〉 > 0 for all f 6= 0,

2. 〈f | g〉 = 〈g | r〉∗,

3. 〈f | ag〉 = a〈f | g〉, and

4. 〈f | g + h〉 = 〈f | g〉 + 〈f | h〉,

for all f, g ∈ V and for all a ∈ C.
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Note. Progovečki comments of page 18 that mathematicians prefer the notation

(f, g) for an inner product (〈f, g〉 is also a common notation) and that property

(3) of Definition I.2.1 is often replace with 〈af | g〉 = a〈f | g〉. The notation

we use, 〈f | g〉, was introduced by physicist P.A.M. Dirac in The Principles of

Quantum Mechanics, Oxford University Press (1930) (a copy is available online at

http://digbib.ubka.uni-karlsruhe.de/volltexte/wasbleibt/57355817/5735

5817.pdf, accessed 11/22/2018).

Theorem I.2.1. In a Euclidean space E , the inner product 〈f | g〉 satisfies the

relations:

(a) 〈af | g〉 = a∗〈f | g〉, and

(b) 〈f + g | h〉 = 〈f | h〉 + 〈g | h〉

for all f, g, h ∈ E and for every scalar a.

Example. Vector space C
n with inner product defined for α = [a1, a2, . . . , an]

T , β =

[b1, b2, . . . , bn]
T ∈ C

n as

〈α | β〉 = a∗
1b1 + a∗

2b2 + · · · + a∗
n
bn,

is a Euclidean space. We denote this space as `2(n).
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Example. The previous example is a finite dimensional Euclidean space. An

infinite dimensional Euclidean space is given by the vector space C0
(2)(R) of all

continuous complex-valued functions f(x) defined on R which satisfy

∫ ∞

−∞

|f(x)|2 dx < ∞ and lim
x→±∞

f(x) = 0

where the inner product is

〈f | g〉 =

∫ ∞

−∞

f∗(x)g(x) dx.

This is, in fact, an inner product (see Exercise I.2.1); notice that it is not clear that

〈f | g〉 is finite (though it is) and it is not clear that f + g satisfies the integrability

condition (though it does).

Note. As you know, we will use inner products to induce norms. A first step in

that direction is the following.

Theorem I.2.2. Schwarz-Cauchy Inequality.

Any two elements f, g of a Euclidean space E satisfies

|〈f | g〉|2 ≤ 〈f | f〉〈g | g〉.
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Definition I.2.2. A mapping of V to R, where we denote the image of f as ‖f‖,

is a norm if it satisfies the following:

1. ‖f‖ > 0 for f 6= 0,

2. ‖0‖ = 0,

3. ‖af‖ = |a|‖f‖, and

4. ‖f + g‖ ≤ ‖f‖ + ‖g‖ (the Triangle Inequality),

for all f, g ∈ V and for all scalars a ∈ C. A vector space which admits a norm is a

normed vector space (or normed linear space).

Note. The next result shows that every Euclidean space E is in fact a normed

vector space.

Theorem I.2.3. In a Euclidean space E with inner product 〈f | g〉, the real-valued

function ‖f‖ =
√

〈f | f〉 is a norm.

Note. In addition to using inner products to induce a norm, we can also (as

happens with dot products in R
n, as seen in Linear Algebra) use inner products to

define orthogonality and projections.
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Definition I.2.3. In a Euclidean space E two vectors f and g are orthogonal,

denoted f ⊥ g, if 〈f | g〉 = 0. Two subsets R and S of E are orthogonal sets,

denoted S ⊥ R, if each vector in R is orthogonal to each vector in S. A set of

vectors from E in which any two vectors are orthogonal is an orthogonal system

of vectors. A vector vector f is normalized (or is a unit vector) if ‖f‖ = 1. An

orthogonal system of vectors is an orthonormal system if each vector in the system

is normalized.

Note. The following theorem makes use of the Gram-Schmidt Process. For notes

on this process at the Linear Algebra level, see http://faculty.etsu.edu/gardnerr

/2010/c6s2.pdf. For notes at the graduate level, see these notes from Theory

of Matrices (MATH 5090): http://faculty.etsu.edu/gardnerr/5090/notes/

Chapter-2-2.pdf.

Theorem I.2.4. If S is a finite of countably infinite set of vectors in a Euclidean

space E and V is the vector subspace of E spanned by S, then there is an orthonor-

mal system T of vectors which spans V ; that is, for which span(T ) = V (that is,

the set of all linear combinations of elements of T ; Prugovečki denotes the space of

T as (T )). T is a finite set when S is a finite set.

Note. We now define an isomorphism between inner product spaces and prove a

not-too-surprising result for finite dimensional inner product spaces.
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Definition I.2.4. Two Euclidean spaces E1 and E2 with inner products 〈· | ·〉1 and

〈· | ·〈2, respectively, are isomorphic (or unitarily equivalent) if there is a mapping

of E1 onto E2 such that if f1, g1 ∈ E1, f2 ∈ E2 is the image of f1, and g2 ∈ E2 is the

image of g1 under the mapping then f1 + g1 is mapped to f2 + g2, af1 is mapped

to af2 for all a ∈ C, and 〈f1 | g1〉1 = 〈f2 | g2〉2. The mapping (which is an inner

product isomorphism) is called a unitary transformation.

Theorem I.2.5. All complex Euclidean n-dimensional spaces are isomorphic to

`2(n) and consequently mutually isomorphic.

Note. Of course, Theorem I.2.5 has an analogous result for real inner product

spaces of dimension n.

Theorem I.2.6. A unitary transformation from Euclidean space E , onto Euclidean

space E2 has a unique inverse mapping which is a unitary transformation of E2 onto

E1.

Note. A proof of Theorem I.2.6 is to be given in Exercise I.2.A.
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