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Section I.3. Metric Spaces

Note. In this section we define a metric space and a complete metric space. The

main result is the fact that every incomplete metric space can be embedded in a

complete metric space (Theorem I.3.2).

Note. In order to do “analysis things,” such as discuss continuity, sequences,

series, and integrals, we need to take limits. This requires at least a topology, but

in this book we will always have a metric (which induces the metric topology).

Definition I.3.1. If S is a set, a real valued function d(ξ, η) on S × S is a metric

if for any ξ, η, ζ ∈ S:

1. d(ξ, η) > 0 if ξ 6= η,

2. d(ξ, ξ) = 0,

3. d(ξ, η) = d(η, ξ), and

4. d(ξ, ζ) ≤ d(ξ, η) + d(η, ζ) (the Triangle Inequality).

A set S on which a metric is defined is a metric space.

Note. First, we address sequences in a metric space.
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Definition I.3.2. An infinite sequence ξ1, ξ2, . . . in a metric space M is said to

converge to ξ ∈ M if for any ε > 0 there is a N(ε) > 0 such that d(ξ, ξn) < ε for

all n > N(ε). An infinite sequence ξ1, ξ2, . . . is a Cauchy sequence if for any ε > 0

there is a M(ε) > 0 such that d(ξm, ξn) < ε for all m,n > M(ε).

Theorem I.3.1. If a sequence ξ1, ξ2, . . . , in a metric space M converges to some

ξ ∈ M then its limit is unique, and the sequence is a Cauchy sequence.

Note. We now use Cauchy sequences to define completeness in a metric space.

Definition I.3.3. A metric space M is complete if every Cauchy sequence con-

verges to an element of M.

Example. The real numbers R are complete (by definition, R is a complete ordered

field) with metric d(x, y) = |x−y|. The rational numbers Q under the same metric is

not complete; a sequence of rational numbers which converges to
√

2 (as a sequence

in R) is Cauchy by Theorem I.3.1, but is not convergent in Q since
√

2 6∈ Q.

Definition I.3.4. A subset S of a metric space M is (everywhere) dense in M if

for any given ε > 0 and any ξ ∈ M, there is an element η ∈ S for which d(ξ, η) < ε.



I.3. Metric Spaces 3

Note. Q is dense in R. Z is not dense in R (nor in Q). We now use the metric to

define some topological ideas.

Definition I.3.5. If ξ is an element of a metric space M, then the set of all points

η satisfying the inequality d(ξ, η) < ε for some ε < 0 is the ε neighborhood of ξ.

If S is a subset of M, a point ζ ∈ M is an accumulation point (or cluster point

or limit point) of S if every ε neighborhood of ζ contains a point of S. The set S

consisting of all the cluster points of S is the closure of S. If S = S then S is a

closed set.

Note. Subset S of M is (everywhere) dense in M if and only if S = M.

Definition I.3.6. A one to one mapping of metric space M into metric space M̃
is isometric if it preserves distances; that is, d1(ξ, η) = d2(ξ̃, η̃) for any ξ, η ∈ M
and ξ̃, η̃ ∈ M̃ where ξ 7→ ξ̃ and η 7→ η̃. A metric space M is densely embedded in

metric space M̃ if there is an isometric mapping of M into M̃, and if the image

M′ of M in M̃ is everywhere dense in M̃.

Note. We now state a major result concerning embedding a given metric space

into a complete metric space.
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Theorem I.3.2. Every incomplete metric space M can be embedded in a complete

metric space M̃, called the completion of M.

Note. The proof is similar to the construction of the real numbers based on

the completion of the rationals. In this construction, a real number is defined

as an equivalence class of Cauchy sequences of rationals. Prugovečki refers to

this as “Cantor’s construction.” This same result is also seen in our Introduc-

tion to Topology (MATH 4357/5357). See Theorem 43.7 of my class notes at:

http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-43.pdf.

Note. Before proving Theorem I.3.2, we need to introduce some notation and

definitions.

Definition. Let M be a metric space. Let M̃S be the set of all Cauchy sequences

in M. The Cauchy sequences ξ̃′ = {ξ′
1
, ξ′

2
, . . .} and ξ̃′′ = {ξ′′

1
, ξ′′

2
, . . .} of elements

of M are equivalent if limn→∞ d(ξ′n, ξ
′′
n) = 0. (By Exercise I.3.1, equivalence is an

equivalence relation on M̃S.) The family of all equivalence classes on M̃S with

respect to this equivalence relation is denoted M̃. We denote both the sequence

ξ̃ ∈ M̃S and the equivalence class in M̃ containing ξ̃ as “ξ̃.”

Definition. Define a real valued function dS on M̃S×M̃S where for ξ̃ = {ξ1, ξ2, . . .}
and η̃ = {η1, η2, . . .} we have dS(ξ̃, η̃) = limn→∞ d(ξn, ηn).
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Note. It is to be shown in Exercise I.3.2 that for ξ̃, η̃ ∈ M̃S as above, we have

|d(ξm, ηm) − d(ξn, ηn)| ≤ d(ξm, ξn) + d(ηm, ηn).

Since ξ̃ and ˜eta are Cauchy sequences, then the sequence {d(ξ1, η1), d(ξ2, η2), . . .}
of real numbers is Cauchy and hence convergent. So the limit in the previous

definition is defined and hence dS is defined.

Definition. Define a real valued function, denoted dE , on M̃ × M̃ where for

equivalence classes ξ̃, η̃ ∈ M̃ we have dE(ξ̃, η̃) = dS(ξ̃, η̃) where on the right hand

side of this equation η̃ ∈ MS and η̃ ∈ MS are elements (or “representatives”) of

equivalence classes ξ̃ and η̃, respectively, and on the left hand side ξ̃, η̃ ∈ M̃ are

equivalence classes. (Prugovečki denotes both dE and dS as “dS,” making reading

parts of this section a challenge.)

Note. We need to show that dE in the precious definition is well-defined (that is,

is independent of the choice of the representatives used). Let ξ̃′ ∼ ξ̃′′ and η̃′ ∼ η̃′′

be equivalent elements of MS under the equivalence relation ∼ on M̃S (so here

they are sequences). By Exercise I.3.3,

|d(ξ′n, η
′
n) − d(ξ′′n, η

′
n)| ≤ d(ξ′n, ξ

′′
n).

Since ξ̃′n ∼ ξ̃′′n then by definition of “∼” (the equivalence relation on M̃S) the left

hand side of this inequality approaches 0 as n → ∞ and so dS(ξ̃′, η̃′) = dS(ξ̃′′, η̃′).

Similarly we can show dS(ξ̃′′, η̃′) = dS(ξ̃′′, η̃′′). Therefore dS(ξ̃′, η̃′) = dS(ξ̃′′, η̃′′)

and so dE(ξ̃, η̃) (where ξ̃ and η̃ are equivalence classes in M̃S) is well-defined and

independent of the representatives of equivalence classes ξ̃ and η̃ in the definition

of dE on M̃.
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Note. The function dE on M̃ is in fact a metric, as is to be shown in Exercise I.3.4.

So M̃ equipped with dE is a metric space and the elements of M̃ are equivalence

classes of Cauchy sequences of elements of M. We next show that M̃ is a complete

metric space; it is the completion of M. That is, we prove Theorem I.3.2.
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