
I.4. Hilbert Spaces 1

Section I.4. Hilbert Spaces

Note. A Hilbert space is a complete inner product space. The inner product

induces a norm and this is how we can address completeness. The “interesting”

Hilbert spaces are infinite dimensional Euclidean spaces. We saw in Theorem I.2.5

that every n-dimensional complex Euclidean space is isomorphic to `2(n). We’ll

see a similar result in Theorem I.4.7 in which we see that every complex infinite-

dimensional “separable” Hilbert space is isomorphic to `2(∞) (this is the Funda-

mental Theorem of Infinite Dimensional Vector Spaces).

Definition. A complete normed space is a Banach space. A Euclidean space (or

an “inner product space”) is a Hilbert space if it is complete with respect to the

norm induced by the inner product.

Note. Technically, we need a metric to discuss completeness, not a norm. But in

an inner product space with inner product 〈· | ·〉 we have the norm ‖f‖ =
√

〈f | f〉

(by Theorem I.2.3) and the metric d(f, g) = ‖f − g‖ (by Exercise I.4.1).

Example. We saw in the second example of Section I.2 that the vector space

C0
(2)(R) of all continuous complex-valued functions f(x) defined on R which satisfy

∫ ∞

−∞

|f(x)|2 dx < ∞ and lim
x→±∞

f(x) = 0

is an inner product space where 〈f | g〉 =
∫ ∞

−∞ f∗(x)g(x) dx. However, there is

a Cauchy sequence in C0
(2)(R) that does not converge to an element of C0

(2)(R).
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Consider

fn(x) =







1 for |x| ≤ a

exp(−n2(|x| − a)2) for |x| > a
.

By Exercise I.4.2, the sequence {fn(x)} is Cauchy. By Exercise I.4.A, fn → f

where f(x) =







1 for |x| ≤ a

0 for |x| > a
and the convergence is with respect to the metric

induced by the inner product on C0
(2)(R).

Definition I.4.1. Euclidean space E can be densely embedded in Hilbert space

H if there is a one to one mapping of E into H such that the image E ′ of E is

everywhere dense in H, and the mapping represents an isomorphism between the

Euclidean spaces E and E ′.

Note. We saw in Theorem I.3.2 that every incomplete metric space can be densely

embedded in a complete metric space. We now show a similar result for Euclidean

spaces.

Theorem I.4.1. Any incomplete Euclidean space E can be densely embedded in

a Hilbert space.

Note. A result similar to Theorems I.3.2 and I.4.1 holds for normed spaces. That

is, every incomplete normed linear space can be densely embedded in a complete

normed linear space (i.e., in a Banach space). See Exercise I.4.5.
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Note. Prugovečki state (page 32): “In quantum mechanics we deal at present

almost exclusively with a special class of Hilbert spaces which are called separable.”

But the real reason to consider separable Hilbert spaces is that they are the type

of Hilbert spaces which have an orthonormal basis (as we’ll see in Theorem I.4.5).

Definition I.4.2. The Euclidean space E is separable if there is a countable every-

where dense subset of vectors of E .

Note. Unless stated otherwise, Prugovečki means complex Hilbert space when he

uses the term “Hilbert space.”

Theorem I.4.2. Every subspace of a separable Euclidean space is a separable

Euclidean space.

Note. We’ll see in Theorem I.4.7 that any two separable Hilbert spaces are iso-

morphic (we will call this the Fundamental Theorem of Infinite Dimensional Vector

Spaces). The following theorem gives us an example of such a space.
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Theorem I.4.3. The set `2(∞) of all one-column complex matrices α with count-

able number of elements, α =











a1

a2

...











for which
∑∞

k=1 |ak|
2 < ∞ becomes a separa-

ble Hilbert space, also denoted `2(∞), if the vector operations are defined by

α + β =











a1

a2

...











=











b1

b2

...











=











a1 + b1

a2 + b2

...











, and aα = a











a1

a2

...











=











aa1

aa2

...











for any scalar a ∈ C, and the inner product is defined by 〈α | β〉 =
∑∞

k=1 a∗
k
bk.

Note. We now adopt Prugovečki’s notation concerning spans of sets. If S is a

set of vectors from an infinite-dimensional Euclidean space, then the vector space

spanned by set S is denoted (S). The (topologically) closed vector space spanned

by set S is denoted [S]. More formally, we have the following.

Definition I.4.3. The vector space (or linear manifold) (S) spanned by the subset

S of a Euclidean space E is the smallest subspace of E containing S (that is, if V

is a subspace of E containing set S then (S) ⊂ V). The closed vector space [S]

spanned by S is the smallest (topologically) closed subspace of E containing set S.

Note. If S ⊂ E where E is a finite dimensional vector space, then (S) = [S] (see

Exercise I.4.8 in which it is to be shown that every finite dimensional Euclidean

space is a separable Hilbert space). The next result gives the relationship between

(S) and [S] is an infinite dimensional Euclidean space.
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Theorem I.4.4. The subspace (S) of the Euclidean space E spanned by set S is

identical with the set of all finite linear combinations a1f − 1+ a2f2 + · · ·+ anfn of

vectors from S. That is,

(S) = {a1f1 + a2f2 + · · · + anfn | f1, f2, . . . , fn ∈ S, a1, a2, . . . , an ∈ C, n ∈ N}.

The closed linear subspace [S] spanned by S is equal to the topological closure

(S) = (S).

Note. The proof of Theorem I.4.4 is to be given in Exercise I.4.9.

Definition I.4.4. An orthonormal system S of vectors in a Euclidean space E is

an orthonormal basis (or a complete orthonormal system) in the Euclidean space E

is the closed linear space [S] spanned by S equals the entire Euclidean space; that

is, if [S] = E .

Note. In a finite dimensional (complex) Euclidean space (which we know to be

isomorphic to `2(n), where n is the dimension, by Theorem I.2.5), an orthonormal

basis is given by the standard basis e1, e2, . . . , en. However, in infinite dimensions

such as in `2(∞), the set of vectors {en | n ∈ N} where the mth component of en

is δmn is not a basis of `2(∞). Notice that α = [1, 1/2, 1/3, . . .]T ∈ `2(∞) (since,

as a sequence, it is square summable), but α cannot be written as a (finite) linear

combination of the en’s. In a vector space, a basis is a linearly independent span-

ning set (see Definition I.1.3); the term “span” requires finite linear combinations.

However, we have α =
∑∞

n=1
1
n
en, but this is not a linear combination but instead

is a series (and hence a limit). Limits require metrics (or, equivalently, norms). In

fact, {en | n ∈ N} is an orthonormal basis (in the sense of Definition I.4.4) but not

a vector space basis (in the sense of Definition I.1.3).
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Note. An alternative approach to the concept of an orthonormal basis, is the idea

of a Schauder basis (in contrast to a Hamel basis) in a vector space with a metric.

For more details, see my online notes on “Groups, Fields, and Vector Spaces” at

http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-1.pdf. The next re-

sult shows that the condition of separability is equivalent to the existence of a

countable orthonormal basis.

Theorem I.4.5. A Euclidean space E is separable if and only if there is a countable

orthonormal basis in E .

Note. The next result gives necessary and sufficient conditions for an orthonormal

system to be a basis. The result is stated and proved for infinite dimensional spaces

but also holds for finite dimensional spaces.

Theorem I.4.6. Each of the following is a necessary and sufficient condition for a

countable orthonormal system T = {e1, e2, . . .} to be a basis in a separable Hilbert

space H.

(a) The only vector f satisfying the relations 〈ek | f〉 = 0 for all k ∈ N is the zero

vector, 0.

(b) For any vector f ∈ H, limn→∞ ‖f −
∑

n

k=1〈ek | f〉ek‖ = 0 or f =
∑∞

k=1〈ek |

f〉ek. The 〈ek | f〉 are Fourier coefficients of f with respect to basis T .

(c) Any two vectors f, g ∈ H satisfy Parseval’s relation 〈f | g〉 =
∑∞

l=1〈f | ek〉〈ek |

g〉.

(d) For any f ∈ H, ‖f‖ =
∑∞

k=1 |〈ek | f〉|2.
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Note. We need a preliminary lemma before presenting the proof.

Lemma I.4.1. For any given vector f in a Euclidean space E (not necessarily

separable) and any countable system {e1, e2, . . .} in E , the sequence {f1, f2, . . .} of

vectors, fn =
∑

n

k=1〈ek | f〉ek is a Cauchy sequence, and the Fourier coefficients

〈ek | f〉 satisfy Bessel’s inequality ‖fn‖ =
∑

n

k=1 |〈ek | f〉|2 ≤ ‖f‖2.

Note. We are now equipped to prove Theorem I.4.6.

Note. We now have the background to prove that all infinite dimensional separable

Hilbert spaces are isomorphic. We elevate this to the status of “Fundamental

Theorem of Infinite Dimensional Vector Spaces.” There are infinite dimensional

vector spaces which are not separable (consider R
∞; though we need a metric on

R∞ to discuss density). so the next theorem does not classify all infinite dimensional

vector spaces.

Theorem I.4.7. Fundamental Theorem of Infinite Dimensional Vector

Spaces.

All complex infinite-dimensional separable Hilbert spaces are isomorphic to `2(∞),

and consequently are mutually isomorphic.
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Note. Prugovečki says (page 42) that the Fundamental Theorem of Infinite Dimen-

sional Vector Spaces “provides the basis of the equivalence of Heisenberg’s matrix

formulation and Schroedinger’s wave formulation of quantum mechanics.”

Theorem I.4.8. Let E be a separable Euclidean space with an orthonormal basis

{e1, e2, . . .} and let E ′ be a Euclidean space. If there is a unitary transformation

from E to E ′ (that is, E and E ′ are isomorphic inner product spaces) and if en

transforms to e′
n
, then {e′1, e

′
2, . . .} is an orthonormal basis in E ′.
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