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Section I.5. Wave Mechanics of a Single Particle

Moving in One Dimension

Note. We begin with a brief review of elementary physics. Consider a particle

of mass m. If the particle has velocity v (as a scalar; we assume one dimensional

motion) then its kinetic energy is K = 1
2
mv2 and its momentum is p = mv. If

the particle is in a gravitational field of strength g and the particle is at a height

h then the potential energy is U = mgh. In SI units (International System of

Units; “système international (d’ unités)” in French, hence “SI”) we measure mass

in kilograms (kg), time in seconds (s), distance in meters (m). The acceleration

due to gravity is measured in m/s2. So kinetic energy is measures in kg m2/s2,

momentum is in kg (m/s2) m = kg m2/s2. Energy is measured in joules (J) where

1 J = 1 kg m2/s2. Also, force is measured in newtons (N) where 1 N = 1 kg m/s2.

Note. Consider a mass m suspended by a string (or a massless rigid rod) of length

L. Let θ be the angle by which the string is displaced from vertical. Then the

forces on the mass satisfy:
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With θ as a function of time, we find from Newton’s Laws of Motion that
d2θ

dt2
+

g

L
sin θ = 0. But this is a nonlinear differential equation (because of the sin θ

term). A standard way to solve this differential equation is to assume that θ is

small so that sin θ ≈ θ (θ is measured in radians) and then the differential equation

is approximated by the linear differential equation
d2θ

dt2
+
g

L
θ = 0. With initial

conditions θ(0) = θ0 and dθ
dt

(0) = 0, then the solution is θ(t) = θ0 cos(
√

g/Lt).

Since arclength s is related to central angle θ by the equation s = θL then the rate

of change of arclength with time is Ldθ/dt; that is, the velocity is Ldθ/dt (notice

that to get the two components of velocity we use θ; here we rather treat velocity

as one dimensional), so

L
dθ

dt
= −Lθ0

√

g

L
sin

(
√

g

L
t

)

= −θ0

√

gL sin

(
√

g

L

)

.

Hence the kinetic energy as a function of time is

K =
1

2
mv2 =

1

2
m

(

−θ0

√

gL sin

(
√

g

L
r

))2

=
mθ2

0gL

2
sin2

( g

L
r
)

.

The height of the mass above its lowest position is h = L(1 − sin θ):

So the potential energy is

U = mgh = mgL(1 − sin θ) = mgL(1 − sin

(

θ0 cos

(
√

r

L
t

))

.

In the absence of friction, the total energy K + U is a constant (but we have

approximated, so we don’t have a precise constant energy in our solution).
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Note. We now consider a particle of mass m which moves in one dimension,

denoted x, with time denoted t. We assume a “potential energy well” (such as

gravitational potential, elastic potential due to a spring, or electrical potential

energy due to an electric charge in an electric filed) described by V (x). In the

momentum of the particle is p = mv then the kinetic energy is 1
2mv

2 = p2/(2m).

So the total energy is E =
p2

2m
+ V (x). Classically, we describe the position of the

particle by the function x(t) (the “trajectory” of the particle).

Note. In wave mechanics, the “state” of one particle is postulated to be described

by a wave function ψ(x, t). We require that
∫ ∞
−∞ |ψ(x, t)|2 dx = 1 for all t. For fixed

x, we require ψ(x, t) to be continuously differential with respect to t. For fixed t

we require that ψ(x, t) have a piecewise continuous second derivative with respect

to x (for now; this will insure that the Riemann integral of the second partial of ψ

with respect to x exists. . . later we shift to Lebesgue integration and can drop this

condition). So for fixed t, ψ(x, t) is an element of C1
(2)(R) (the superscript of “1”

indicates a continuous first derivative [which we have since the second derivative

exists] and the subscript of “(2)” indicates that the functions are square integrable).

In addition, we require limx→±∞ f ′(x) = 0 for each t, where f(x) = ψ(x, t) with t

fixed.

Note. The inner product C1
(2)(R) is 〈f, g〉 =

∫ ∞
−∞ f∗(x)g(x) dx, so the condition

∫ ∞
−∞ |ψ(x, t)|2 dx = 1 for all t is a normalization condition of ‖ψ(x, t)‖ = 1 for all

t. We also let Ψ(t) ∈ C1
(2)(R) denote the “vector function” ft(x) = ψ(x, t) (instead

of a vector as an n-tuple indexed by 1, 2, . . . , n, think of the vector as an |R|-tuple

with x as the index).
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Note. Classically, a particle of mass m with positive functions x(t) satisfies (by

Newton’s Second Law, F = ma) F = mẍ = m
d2x

dt2
. The force is related to the

potential function as F (x) = − d

dx
[V (x)], so that −dV

dx
= m

d2x

dt2
. So Newton’s

Second Law yields a relation between the potential function (a function of position

only, to a constant with respect to time) and the position function x(t).

Note. In wave mechanics, it is postulated that the wave function ψ(x, t) (describing

the state of one particle) satisfies Schroedinger’s equation:

i}
∂ψ(x, t)

∂t
= − }2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

where } = h/(2m) for Plank’s constant h (numerically, } = 1.054 × 10−34 J/s).

Note. Prugovečki calls the following a “heuristic recipe.” If we take the classical

formula relating energy, momentum, and potential, E = p2/(2m) + V (x), replace

energy E with the operator i}
∂

∂t
, and replace momentum p with −i} ∂

∂x
, then we

get the operator relation

i}
∂

∂t
= − }2

2m

∂2

∂x2
+ V (x).

Applying this to wave function ψ(x, t) produces Schroedinger’s equation.

Note. For the next result, we need Leiniz’s Rule which states that if f(x, t) and

∂
∂x

[f(x, t)] are continuous in x and t then

d

dt

[
∫ b

a

f(x, t) dx

]

=

∫ b

a

∂

∂t
[f(x, t)] dx.
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Theorem I.5.A. Schroedinger’s equation implies that ‖ψ(x, t)‖ is a constant with

respect to time t where for each fixed t, limx→±∞ ψ(x, t) = 0 and limx→±∞
(

∂ψ(x,t)
∂x

)

=

0.

Note. In 1926, Niels Bohr (1885–1962) introduced the interpretation of the wave

function as a probability distribution. The probability of finding the particle in

interval I ⊂ R at time t is Pt(I) =
∫

I
|ψ(x, t)|2 dx.

Note. Classically, we describe the dynamics of a single particle of mass m with

position x(t) is a potential field V (x) as:

Differential Equation: F = −dV (x)
dx

= mẍ = md2x(t)
dt2

Initial Conditions:







x(0) = x0

ẋ(0) = v0.

So solving this second order (ordinary) initial value problem yields a unique position

x(t) of the particle at time t.

Note. In the wave mechanics of one particle, we seek ψ(x, t) satisfying Schroedinger’s

equation and such that ψ(x, t0) = ψ0(x) for some time t0 and some ψ0(x) ∈ ψ0(x)

for some time t0 and some ψ0(x) ∈ C1
(2)(R). That is, we want ψ(x, t) where

Partial Differential Equation: i}∂ψ(x,t)
∂t

= − }
2

2m
∂2ψ(x,t)
∂x2 + V (x)ψ(x, t)

Initial Conditions: ψ(x, t0) = ψ0(x).

Progovečki claims that this initial condition problem has a unique solution for

ψ0(x) ∈ C1
(2)(R) since Schroedinger’s equation is of the first order in t. We could

use some more justification from the theory of PDEs and IVPs here.
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Note. We now perform some manipulation that are a little uninspired. We seek

a solution ψ(x, t) of a certain form. The approach is inspired by the technique of

separation of variables. We search for a solution of the form

ψ(x, t) = ψ(x) exp(−(i/})Et) (5.6)

where E is some constant. We assume a solution of this form and use Schroedinger’s

equation to produce an “eigenvalue problem” (in Prugovečki’s terminology). We’ve

claimed above that a solution to the IVP is unique, so if this approach works to

produce a solution then we have succeeded in finding the unique solution.

Note. Applying Schroedinger’s equation to (5.6) gives

i}
∂ψ(x, t)

∂t
= i}ψ(x)

(−iE
}

)

exp(−(i/})Et)

and

− }
2

2m

∂2ψ(x, t)

∂x2
+V (x)ψ(x, t) = − }

2

2m

d2ψ(x)

dx2
exp(−(i/})Et)+V (x)ψ(x) exp(−i/})Et)

or

Eψ(x) = − }
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x). (5.7)

This is called the time-independent Schroedinger equation. Notice that it is a second

order linear ODE. Prugovečki claims that (5.7) has a family Eb of functions π(x) ∈

C1
(2)(R) as solutions for a set Sp of values of E. The numbers for a set Sp are the

eigenvalues of (5.7).
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Note. Recall that if ~vi and ~vj are eigenvectors associated with distinct eigenvalues

λi and λj , respectively, of a Hermitian matrix A (that is, A equals it conjugate

transpose; if A is real this simply implies that A is symmetric) then ~vi and ~vj are

orthogonal. See Theorem 9.6, “Orthogonality of Eigenspaces of a Hermitian Ma-

trix.,” of my online notes http://faculty.etsu.edu/gardnerr/2010/c9s3.pdf

for Eigenvalues and Diagonalization (of complex matrices). Also recall that the

eigenvalues of a Hermitian matrix (and hence of a real symmetric matrix) are

real (see Theorem 9.5, “The Spectral Theorem for Hermitian Matrices” from the

same website). In a similar way, the next result shows that solutions to the time-

independent Schroedinger equation which correspond to distinct eigenvalues are

orthogonal.

Theorem I.5.1. If ψ1(x) and ψ2(x), their first derivatives dψ1(x)/dx and dψ2(x)/dx,

as well as V (x)ψ1(x) and V (x)ψ2(x) are from C1
(2)(R), then

〈

ψ1(x)

∣

∣

∣

∣

− }

2m

d2ψ2(x)

dx2
+ V (x)ψ2(x)

〉

=

〈

− }
2

2m

d2ψ1(x)

dx2
+ V (x)ψ1(x)

∣

∣

∣

∣

ψ2(x)

〉

.

In each solution ψ(x) of the time-independent Schroedinger equation (5.7) has the

property that ψ(x), dψ(x)/dx, V (x)ψ(x) ∈ C1
(2)(R), then each eigenvalue E of the

time-independent Schroedinger equation is a real number, and if ψ1(x) and ψ2(x)

are two eigenfunctions of the time-independent Schroedinger equation correspond-

ing to two distinct eigenvalues E1 6= E2, then ψ1(x) and ψ2(x) are orthogonal.
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Note. So we see that the time-independent Schroedinger equation behaves much

like a Hermitian matrix. This will be elaborated on in Chapter IV, “The Axiomatic

Structure of Quantum Mechanics.” We will then use Lebesgue integration and

this will allow us to weaken the hypotheses of Theorem I.5.1 (and so address the

concerns raised in its proof).

Definition. The family Eb of solutions to the time-independent Schroedinger

equation in C1
(2)(R) consists of the bounded states. The set Sp of eigenvalues are

the only possible energy values that a system in a bound state can assume and

are called the energy eigenvalues of the bound states and Sp is the point energy

spectrum.

Note. In Exercise I.5.3, for a given energy eigenvalue E ∈ Sp the corresponding set

of eigenfunctions is a linear space, denoted ME, of C1
(2)(R). If ME is one dimensional

then every eigenvalue E is nondegenerate; otherwise E is degenerate.

Note. In Exercise I.4.2 it is to be shown that C1
(2)(R) is not complete. By Theorem

I.4.1 there is a completion of C1
(2)(R) which we denote H(1) (a Hilbert space). In

Chapter II we show that H(1) is separable. It is assumed that each element of H(1)

can represent a physical state at a certain time.
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Theorem I.5.B. Let H(1)
b be the (topologically) closed subspace of H(1) which is

spanned by Eb (where Eb is the set of “bound states”; that is, the set of C1
(2)(R)

which are solutions of the time-independent Schroedinger equations). Then an

orthonormal basis of H(1)
b is given by T = ∪E∈SpTE where TE is an orthonormal

basis for ME. NOTE: You may assume that H(1) is separable (as will be shown in

Chapter II).

Note. “In practice” (Prugovečki says on page 50) the elements of the TE of The-

orem I.5.B can be chosen to belong to C1
(2)(R). Since T is countable (by Exercise

I.5.5), denote it as T = {Ψ1,Ψ2, . . .}. Then by Theorem I.4.6, every Ψ ∈ H(1)
b

satisfies Ψ =
∑∞

k=1〈Ψk | Ψ〉Ψk.

Note. We will show below that the solution to the initial-value problem for the

Schroedinger equation for bound states, where the initial state is Ψ0 ∈ H(1)
b at time

t = t0 is

Ψ(t) =

∞
∑

k=1

exp

(

− i

}
Ek(t− t0)

)

〈Ψk,Ψ0〉Ψk (5.11)

where Ek is the eigenvalue corresponding to eigenfunction ψ(x) ∈ C1
(2)(R) which

represents Ψk as described in Theorem 4.1 (where incomplete space E is embedded

in complete space Ẽ ; E is not a subspace of Ẽ “represent” elements of Ẽ , just as

ϕ(x) ∈ C1
(2)(R) represents Ψk ∈ H(1)

b ). First we establish that the series in (5.11)

actually converges for every t ∈ R to a Ψ(t) ∈ H(1)
b .
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Theorem I.5.2. For any fixed t ∈ R, the sequence {Φ1(t),Φ2(t), . . .},

Φn(t) =

n
∑

k=1

ck(t)Ψk

where ck(t) = exp

(

− i

}
Ek(t− t0)

)

〈Ψk | Ψ0〉,

is convergent in the norm of H(1)
b to some Ψ(t) ∈ H(1)

b . For t = t0, limn→∞ Φn(t0) =

Ψ(t0) satisfies the initial condition Ψ(t0) = Ψ0.

Note. We now use the orthonormal basis {Ψn} and the ϕ(x) in Eb to find a solution

to the Schroedinger equation. We currently include lots of hypotheses, but will give

a proof in Chapter IV including less hypotheses.

Theorem I.5.C. Suppose the series

∞
∑

k=1

exp

(

− i

}
Ek(t− t0)

)

〈Ψk | Ψ0〉ϕk(x)

converges in the H(1)
b norm for each fixed value of t and converges pointwise for each

value of x and t to a limit function ϕ(x, t), and that ∂2ϕ(x, t)/∂x2 and ∂ψ(x, t)/∂t

can be obtained by differentiating the series term by term twice in x and once in

t. Here, ϕk(x) satisfies the time-independent Schroedinger equation for E = Ek.

Then ϕ(x, t) is a solution to Schroedinger’s equation

i}
∂ϕ(x, t)

∂t
= − }2

2m

∂2ϕ(x, t)

∂x2
+ V (x)ϕ(x, t).
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Note. We denote the remainder of this section to the study of a solution to

Schroedinger’s equation for a specific potential function V (x). The level of rigor

will slip some in what follows. Consider

V (x) =







0 for 0 ≤ x ≤ L

V0 > 0 for x < 0 and x > L.

This is called the square-well potential:

The force (recall that the force is dV/dx) is 0 except at the walls x = 0 and x = L

of the potential well. Prugovečki says the energy is infinite at x = 0 and x = L.

For this potential function, the time independent Schroedinger equation is

d2ψ(x)

dx2
+

2m

}2
Eψ(x) = 0 for 0 ≤ x ≤ L

d2ψ(x)

dx2
+

2m

}2
(E − V0)ψ(x) = 0 for x < 0, x > L

(like Progovečki, we include x = 0 and x = L in Schroedinger’s equation, through

this is arguable. Notice that we have second order ordinary ODEs with constant

coefficients and so there are two linearly independent solutions for each. We might

expect to see sine and cosine functions, but since ψ(x) is a complex valued function

of a real variable, we instead express solutions in terms of exponential functions,

recalling Euler’s formula: eix = cosx + i sin x.
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Theorem I.5.D. The general solution of

d2ψ(x)

dx2
+

2m

}2
Eψ(x) = 0 for 0 ≤ x ≤ L

d2ψ(x)

dx2
+

2m

}2
(E − V0)ψ(x) = 0 for x < 0, x > L

is

ψ(x) =



















ceikx + de−ikx where k =
√

2mE/} for 0 ≤ x ≤ L

a1e
−ik′x + b1e

ik′x where k′ =
√

2m(E − V0)/} for x < 0

a2e
ik′′x + b2e

−ik′′x where k′′ =
√

2m(E − V0)/} for x > L.

Note. Since ψ(x) must satisfy the normalization condition
∫ ∞
−∞ |ψ(x)|2 dx = 1 then

we must have ψ(x) → 0 as |x| → ∞. This implies for x < 0 that in the solution

of Theorem I.5.D we must have k′ − iκ and b1 = 0 for real κ ( or, equivalently,

k′ −−iκ and a1 = 0) and for x > L we must have k′ = k′′ = (
√

2m(E − V0)/}
2)iκ

then

κ =

√

2m(E − V0)

i}2
=

√

2m(E − V0)
√
−1}

2 =

√

2m(V0 −E)

}2
> 0.

Note. Since ψ(x) = C1
(2)(R), ψ(x) is continuous and has a continuous first deriva-

tive (that’s what the “1” indicates), so imposing these conditions at x = 0 and

x = L yields the following:

lim
x→0−

ψ(x) = lim
x→0−

a1e
ik′x = a1 = lim

x→0+
ψ(x) = lim

x→0+
(ceikx + de−ikx) = c+ d,

lim
x→0−

dψ(x)

dx
= lim

x→0−
κa1e

−κx = κa1 = lim
x→0+

dψ(x)

dx
= lim

x→0+
(ikceikx−ikde−ikx) = ik(c−d),
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lim
x→L−

ψ(x) = lim
x→L−

(ceikx + de−ikx) = ceikL + de−ikL

= lim
x→L+

ψ(x) = lim
x→L+

a2e
ik′′x = a2e

ik′′L = aκL2 ,

lim
x→L−

dψ(x)

dx
= lim

x→L−

(ikceikx − ikde−ikx) = ik(ceikL − de−ikL)

= lim
x→L+

dψ(x)

dx
= lim

x→L+
(ik′′a2e

ik′′x) = ik′′a2e
ik′′L = −κa2e

−κL.

That is, we need

a1 = c + d κa1 = ik(c− d)

ceikL + de−kL = a2e
−κL ik(ceikL − de−ikL) = −κa2e

−κL.

Eliminating A1 in the top two equations gives κ(c+ d) = ik(c− d) or (κ− ik)c +

(κik)d = 0. Eliminating a2 in the bottom tow equations gives −κ(ceikL+de−ikL) =

ik(ceikL−de−ikL) or (κ+ik)eikLc+(κ−ik)de−ikL = 0 or (κ+ik)e2ikLc+(κ−ik)d = 0.

So we have two linear equations in two unknowns:

(κ− ik)c + (κ+ ik)d = 0

(κ+ ik)eeikLc + (κ− ik)d = 0.
(5.15)

Since the system is homogeneous, for a nontrivial solution (where c 6= 0 6= d) we

need the determinant of the coefficient matrix to be 0. So we want
∣

∣

∣

∣

∣

∣

κ− ik κ+ ik

(κ+ ik)e2ikL κ− ik

∣

∣

∣

∣

∣

∣

= (κ− ik)2 − (κ+ ik)2e2ikL = 0

or

e2ikL =

(

κ− ik

κ + ik

)2

. (5.18)

Now k =
√

2mE/} and κ =
√

2m(V0 − E)/} where }, m, and V0 are constants.

So we need to find values of E for which (5.18) holds. Now |e2ikL| = 1, so we
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have

∣

∣

∣

∣

κ− ik

κ + ik

∣

∣

∣

∣

= 1 and hence
κ− ik

κ + ik
= eiϕ = cosϕ + i sinϕ. Now

κ− ik

κ + ik

κ− ik

κ− ik
=

κ2 − 2iκk − k2

κ2 + k2
and so we need

cosϕ =
κ2 − k2

κ2 + k2
=

2m(V0 − E/}2 − 2me/}2

2m(V0 − E)/}2 + 2me/}2
=

V0 − E) −E

(V0 − E) +E
=
V0 − 2E

V0
= 1−2

E

V0

so that 0 ≤ E ≤ V0 is necessary, and

sinϕ =
2κk

κ2 + k2
= −2

(
√

2m(V0 − E)/})(
√

2mE/})

2m(V0 −E)/}2 + 2mE/}2
= −2

√

(v0 − E)E

(V0 − E) + E

= −2

√

(V0 − E)E

V0
= −2

√

(V0 −E)E

V 2
0

= −2

√

E

V0

(

1 − E

V0

)

.

By (5.18) and our introduction of Eiϕ, we have e2iϕ = e2ikL so that we have 2ϕ =

2kL + 2nπ (since ez has period 2πi) or ϕ = kL + nπ where n ∈ Z. Since k =
√

2mE/} then ϕ =
L

}

√
me + nπ for n ∈ Z. We have cosϕ = 1 − 2E/V0 from

above, so one value of ϕ is cos−1(1 − 2E/V0). This leads to the relationship:

L

}

√
2mE = cos−1(1 − 2E/V0) + nπ where n ∈ Z (∗)

(notice that this differs from Proguvečki’s equation in two places; see page

54).
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Notice from the graphs above that y = cos−1(1 − 2E/V0) + nπ and y = L
}

√
2mE

will intersect, but we need for n such that n ≥ 0 and nπ < L
}

√
2mV0. So for each

appropriate n ∈ Z we can solve (∗) (numerically since it is a transcendental equa-

tion) for E and we denote this solution as En. Each eigenvalue En is nondegenerate

(Prugovečki says on page 54) and the corresponding solution is ψn(X) to be given

next.

Note. We will express the coefficients in ψn(x) in terms of cn (the coefficients

of eiknx). From the first equation in system (5.15), we have d =
−(κ− ik)

κ+ ik
c or

dn =
−(κn − ikn)

κn + ikn
cn. By continuity of ψ(x) at x = 0 we have a1 = c + d =

c− κ− ik

κ+ ik
c =

eik

κ+ ik
c of a1,n =

2ikn
κn + ikn

cn. By the continuity of ψ(x) at x = L we

have ce−kL + de−ikL = a2e
−κL or

a2 = ceκL+ikL + deκL−ikL = ce(κ+ik)L − κ− ik

κ + ik
ce(κ−ik)L

or

a2,n = cn

(

e(κn+ikn)L − κn − ikn
κn + ikn

e(κn−ikn)L

)

.

So we have (notice κn = −ikn):

ψn(x) =



















a1,ne
κnx where kn =

√

2m(En − V0)/} for x < 0

cne
iknx + dne

−iknx where kn =
√

2mEn/} for 0 ≤ x ≤ L

a2,ne
−κnx where kn =

√

2m(En − V0)/} for x > L
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or

ψn(x) =



































cn
2ikn

κikn

eκnx where kn =
√

2m(En − V0)/} for x < 0

cn

(

eiknx − κn−ikn

κn+ikn

e−iknx
)

where kn =
√

2mEn/} for 0 ≤ x ≤ L

cn

(

e(κn+ikn)L − κn−ikn

κn+ikn

e(κn−ikn)L
)

e−κnx where kn =
√

2m(En − V0)/}

for x > L.

Finally, we can find the modulus of cn using the normalization condition that
∫ ∞
−∞ |ψn(x)|2 dx = 1. We then have ψn determined (up to a multiple of a complex

number of modulus 1) and then can use the ψn(x) functions to solve Schroedinger’s

equation for this V (x) as described in Theorem I.5.C.

Note. Classically, a particle in a square potential well could not escape (that is,

if the particle has initial position x with 0 < x < L then it remains in 0 < x < L).

However, since |ψn(x)|2 is not 0 for x < 0 nor for x > L then this means (with

the probabilistic interpretation of Bohr) that there is a nonzero probability that a

particle starting in the potential well (that is, in 0 < x < L) can be located outside

the well in the future. The particle can “tunnel out” of the well in the quantum

mechanical setting.
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