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Section 1.5. Wave Mechanics of a Single Particle

Moving in One Dimension

Note. We begin with a brief review of elementary physics. Consider a particle
of mass m. If the particle has velocity v (as a scalar; we assume one dimensional
motion) then its kinetic energy is K = %mvz and its momentum is p = mv. If
the particle is in a gravitational field of strength ¢ and the particle is at a height
h then the potential energy is U = mgh. In SI units (International System of
Units; “systeme international (d” unités)” in French, hence “SI”) we measure mass
in kilograms (kg), time in seconds (s), distance in meters (m). The acceleration
due to gravity is measured in m/s?. So kinetic energy is measures in kg m?/s?,

momentum is in kg (m/s?) m = kg m?/s%. Energy is measured in joules (J) where

1J =1kg m?/s% Also, force is measured in newtons (N) where 1 N = 1 kg m/s?.

Note. Consider a mass m suspended by a string (or a massless rigid rod) of length
L. Let 6 be the angle by which the string is displaced from vertical. Then the

forces on the mass satisfy:

Simple
Pendulum
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2
With 6 as a function of time, we find from Newton’s Laws of Motion that — +

dt?
%sinﬁ = 0. But this is a nonlinear differential equation (because of the sin 6
term). A standard way to solve this differential equation is to assume that 6 is
small so that sin @ ~ 6 (0 is measured in radians) and then the differential equation

20
is approximated by the linear differential equation — + %«9 = 0. With initial

dt?
conditions 6(0) = 6 and 2(0) = 0, then the solution is 6(t) = 60y cos(1/g/Lt).
Since arclength s is related to central angle 6 by the equation s = #L then the rate
of change of arclength with time is L df/dt; that is, the velocity is L df/dt (notice

that to get the two components of velocity we use 6; here we rather treat velocity

as one dimensional), so

do g . 9.\ _ : g
Ldt = —L0, Lsm (\/;t> = —0y\/ gL sin (\/;> :

Hence the kinetic energy as a function of time is

2
1 1 / 02gL
K = §mv2 =5m (—90\/9L sin ( %r)) _ gg sin? (%r) :

The height of the mass above its lowest position is h = L(1 — sin6):

—

L sinf —

—

.

h =

So the potential energy is

U = mgh = mgL(1 —sinf) = mgL(1 — sin ((90 oS (\/;t>> :

In the absence of friction, the total energy K + U is a constant (but we have

approximated, so we don’t have a precise constant energy in our solution).
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Note. We now consider a particle of mass m which moves in one dimension,
denoted x, with time denoted t. We assume a “potential energy well” (such as
gravitational potential, elastic potential due to a spring, or electrical potential
energy due to an electric charge in an electric filed) described by V(z). In the
momentum of the particle iszp = mw then the kinetic energy is %mvz = p*/(2m).

So the total energy is F = 2p— + V(x). Classically, we describe the position of the
m
particle by the function z(t) (the “trajectory” of the particle).

Note. In wave mechanics, the “state” of one particle is postulated to be described
by a wave function i(z,t). We require that [ |¢(z,t)|* dz = 1 for all ¢. For fixed
x, we require 1(z,t) to be continuously differential with respect to t. For fixed ¢
we require that 1(z,t) have a piecewise continuous second derivative with respect
to z (for now; this will insure that the Riemann integral of the second partial of 1)
with respect to x exists. . .later we shift to Lebesgue integration and can drop this
condition). So for fixed t, ¥(x,t) is an element of C(lz)(R) (the superscript of “1”
indicates a continuous first derivative [which we have since the second derivative
exists] and the subscript of “(2)” indicates that the functions are square integrable).
In addition, we require lim, .1 f'(x) = 0 for each ¢, where f(x) = ¢(x,t) with ¢
fixed.

Note. The inner product C(lz) (R) is (f,g9) = [°o f*(z)g(z)dz, so the condition
75 |w(x, )P de = 1 for all ¢ is a normalization condition of [|¢(z,t)| = 1 for all
t. We also let W(t) € C(lz)(R) denote the “vector function” fi(x) =¥ (x,t) (instead
of a vector as an n-tuple indexed by 1,2, ..., n, think of the vector as an |R|-tuple

with x as the index).
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Note. Classically, a particle of mass m with positive functions x(¢) satisfies (by

d2
Newton’s Second Law, F' = ma) F = mi = md—;;j The force is related to the
d av d?
potential function as F(x) = —%[V(a:)], so that - = md—;;j So Newton’s

Second Law yields a relation between the potential function (a function of position

only, to a constant with respect to time) and the position function x(t).

Note. In wave mechanics, it is postulated that the wave function ¢ (x, t) (describing

the state of one particle) satisfies Schroedinger’s equation:
U@, t) n? 0% (x,t)
th————= = —
ot 2m  Ox?

+ V(x)y(z,t)

where i = h/(2m) for Plank’s constant h (numerically, i = 1.054 x 1073* J/s).

Note. Prugovecki calls the following a “heuristic recipe.” If we take the classical
formula relating energy, momentum, and potential, £ = p*/(2m) + V(x), replace

0 0
energy E with the operator ih—, and replace momentum p with —zh—, then we

ot ox’
get the operator relation
0 n o2
h—=———+4+V
"o 2m Ox? (%)

Applying this to wave function ¢ (x,t) produces Schroedinger’s equation.

Note. For the next result, we need Leiniz’s Rule which states that if f(z,t) and

9 1f(z,t)] are continuous in z and ¢ then

Ox
1 ] = [ 2o
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Theorem 1.5.A. Schroedinger’s equation implies that |1 (x,t)]| is a constant with
respect to time ¢ where for each fixed ¢, lim, 1+ ¥(z,t) = 0 and lim,_, 4 (%) =

0.

Note. In 1926, Niels Bohr (1885-1962) introduced the interpretation of the wave
function as a probability distribution. The probability of finding the particle in
interval I C R at time ¢ is (1) = [ [¢(z,t)]* dz.

Note. Classically, we describe the dynamics of a single particle of mass m with

position z(t) is a potential field V (z) as:

Differential Equation: F = —d‘g—f) = mi = mdz‘;@
z(0) =z

Initial Conditions:
SIZ(O) = .

So solving this second order (ordinary) initial value problem yields a unique position

x(t) of the particle at time t.

Note. In the wave mechanics of one particle, we seek ¢ (x, t) satisfying Schroedinger’s
equation and such that ¢(z,ty) = ¥y(x) for some time ¢y, and some Yy(z) € Yo(z)

for some time ¢y, and some ¥y(x) € C(lz) (R). That is, we want 1 (z,t) where

S : : - O(x, 2 92y(x,
Partial Differential Equation: ih w{gt b — — L g)irz D+ V(x)(z,t)

Initial Conditions: P(x,ty) = Yo(x).
Progovecki claims that this initial condition problem has a unique solution for
Po(z) € C(lz) (R) since Schroedinger’s equation is of the first order in ¢. We could

use some more justification from the theory of PDEs and IVPs here.
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Note. We now perform some manipulation that are a little uninspired. We seek
a solution v (x,t) of a certain form. The approach is inspired by the technique of

separation of variables. We search for a solution of the form

(1) = P(x) exp(=(i/n)EL)  (5.6)

where E' is some constant. We assume a solution of this form and use Schroedinger’s
equation to produce an “eigenvalue problem” (in Prugovecki’s terminology). We've
claimed above that a solution to the IVP is unique, so if this approach works to

produce a solution then we have succeeded in finding the unique solution.

Note. Applying Schroedinger’s equation to (5.6) gives

ma‘”g’” = il (x) (_;E ) exp(—(i/h)Et)
and
- 27751 (9277255;, t) +V($)¢($, t) = _%di;i(;j) eXp(—(i/ﬁ)Et)+V(aj)¢(;U) exp(—z’/ﬁ)E’t)
I d*(x)

Ey(x) = +V(z)y(r).  (57)

om da?

This is called the time-independent Schroedinger equation. Notice that it is a second
order linear ODE. Prugovecki claims that (5.7) has a family &} of functions 7 (z) €
C(lz) (R) as solutions for a set Sp of values of E. The numbers for a set Sp are the

eigenvalues of (5.7).
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Note. Recall that if 7; and v; are eigenvectors associated with distinct eigenvalues
Ai and JAj, respectively, of a Hermitian matrix A (that is, A equals it conjugate
transpose; if A is real this simply implies that A is symmetric) then v; and ¥; are
orthogonal. See Theorem 9.6, “Orthogonality of Eigenspaces of a Hermitian Ma-

Y

trix.,” of my online notes http://faculty.etsu.edu/gardnerr/2010/c9s3.pdf
for Figenvalues and Diagonalization (of complex matrices). Also recall that the
eigenvalues of a Hermitian matrix (and hence of a real symmetric matrix) are
real (see Theorem 9.5, “The Spectral Theorem for Hermitian Matrices” from the
same website). In a similar way, the next result shows that solutions to the time-

independent Schroedinger equation which correspond to distinct eigenvalues are

orthogonal.

Theorem I.5.1. If ¢;(x) and ¢o(x), their first derivatives di; (x) /dz and dio(x) /dx,
as well as V(z)¢1(z) and V(2)s(2) are from Cfy) (R), then

(o) | g Vo) = (g g+ Vi) | o)

In each solution ) (z) of the time-independent Schroedinger equation (5.7) has the
property that o (x), dy(x)/dz, V (z)(z) € C(lz)(R), then each eigenvalue F of the
time-independent Schroedinger equation is a real number, and if ¥ (x) and ¥ (z)
are two eigenfunctions of the time-independent Schroedinger equation correspond-

ing to two distinct eigenvalues Ey # F», then ¢(x) and 19(x) are orthogonal.
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Note. So we see that the time-independent Schroedinger equation behaves much
like a Hermitian matrix. This will be elaborated on in Chapter IV, “The Axiomatic
Structure of Quantum Mechanics.” We will then use Lebesgue integration and
this will allow us to weaken the hypotheses of Theorem 1.5.1 (and so address the

concerns raised in its proof).

Definition. The family &, of solutions to the time-independent Schroedinger
equation in C(lz) (R) consists of the bounded states. The set Sp of eigenvalues are
the only possible energy values that a system in a bound state can assume and
are called the energy eigenvalues of the bound states and Sp is the point energy

spectrum.

Note. In Exercise 1.5.3, for a given energy eigenvalue £/ € Sp the corresponding set
of eigenfunctions is a linear space, denoted Mg, of C(lz) (R). If M is one dimensional

then every eigenvalue F is nondegenerate; otherwise E is degenerate.

Note. In Exercise 1.4.2 it is to be shown that C(lz)(R) is not complete. By Theorem
[.4.1 there is a completion of C(lz) (R) which we denote H") (a Hilbert space). In
Chapter IT we show that H() is separable. It is assumed that each element of H™)

can represent a physical state at a certain time.
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Theorem 1.5.B. Let Hl()l) be the (topologically) closed subspace of H") which is
spanned by &, (where & is the set of “bound states”; that is, the set of C(lz)(R)
which are solutions of the time-independent Schroedinger equations). Then an
orthonormal basis of Hl()l) is given by T" = Ugeg, Tr where T is an orthonormal

basis for M. NOTE: You may assume that H(!) is separable (as will be shown in
Chapter II).

Note. “In practice” (Prugovecki says on page 50) the elements of the Ty of The-
orem [.5.B can be chosen to belong to C(lz)(R). Since T' is countable (by Exercise
1.5.5), denote it as T = {¥y,¥,,...}. Then by Theorem 1.4.6, every U € H.’
satisfies W = > 2 (U, | U)Wy

Note. We will show below that the solution to the initial-value problem for the
Schroedinger equation for bound states, where the initial state is ¥ € Hl()l) at time
t= t() 18

\Il(t) = Z exp (—%Ek(t — to)) <\Ilk, \Il()>\1’k (511)

k=1

where Ej is the eigenvalue corresponding to eigenfunction ¢ (x) € C(lz) (R) which
represents Wy, as described in Theorem 4.1 (where incomplete space £ is embedded
in complete space &; £ is not a subspace of £ “represent” elements of &, just as
o(x) € C(lz)(R) represents Wy € Hl()l)). First we establish that the series in (5.11)

actually converges for every t € R to a ¥(t) € Hl()l).
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Theorem 1.5.2. For any fixed t € R, the sequence {®;(t), P2(t), ...},

n

Ou(t) = r(t)y

k=1

where ¢, (t) = exp (—%Ek(t — to)) (W | Vo),

is convergent in the norm of Hl()l) to some U (t) € Hl()l). For t = ty, lim, .o ®,,(tg) =

WU (ty) satisfies the initial condition U (ty) = V.

Note. We now use the orthonormal basis {¥, } and the ¢(z) in & to find a solution
to the Schroedinger equation. We currently include lots of hypotheses, but will give
a proof in Chapter IV including less hypotheses.

Theorem 1.5.C. Suppose the series

S exp (—%Ek(t = t0)> (T, | Uo)eon(z)

k=1

converges in the Hl()l) norm for each fixed value of ¢ and converges pointwise for each
value of z and ¢ to a limit function ¢(z,t), and that 9?p(x,t) /0% and O(x,t) /0t
can be obtained by differentiating the series term by term twice in x and once in
t. Here, pp(x) satisfies the time-independent Schroedinger equation for £ = Fj.

Then ¢(z,t) is a solution to Schroedinger’s equation

LO0p(xt) B 9Pp(xt)
zﬁT =552 V(z)p(z,t).
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Note. We denote the remainder of this section to the study of a solution to
Schroedinger’s equation for a specific potential function V(x). The level of rigor

will slip some in what follows. Consider

0 for0<ax<L
V(z) =
Vo >0 forx<0andax> L.

This is called the square-well potential:

V,
24 o— V(x)

_T ¢
L
The force (recall that the force is dV/dx) is 0 except at the walls z =0 and z = L

of the potential well. Prugovecki says the energy is infinite at x = 0 and x = L.

For this potential function, the time independent Schroedinger equation is
d?y)(x) N 2m
dx? h?

d? 2
) 2 Vi) = 0 for < 0,2 > L

(like Progovecki, we include z = 0 and = L in Schroedinger’s equation, through

EY(z)=0for 0<ax <L

this is arguable. Notice that we have second order ordinary ODEs with constant
coefficients and so there are two linearly independent solutions for each. We might
expect to see sine and cosine functions, but since () is a complex valued function
of a real variable, we instead express solutions in terms of exponential functions,

recalling Euler’s formula: e = cosx + i sin z.
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Theorem 1.5.D. The general solution of

()  2m
dz2 + ﬁ2E¢($)=Ofor0§g;§L
Y(x)  2m
C;i(z)+ 72 (E—=Vo)u(x) =0for z < 0,2 > L

1s
( . .
ce™ 4 de~™** where k = v2mFE/h for 0 <z < L
V(@) = are”** 4+ b1 where K = \/2m(E — V;)/h for z < 0
aze™™’® 4 bye *'T where k" = \/2m(E — V;) /A for x > L.

\

Note. Since ¢(z) must satisfy the normalization condition [~ |¢(z)|*dx = 1 then
we must have ¢ (x) — 0 as |z| — oco. This implies for x < 0 that in the solution

of Theorem 1.5.D we must have k' — ix and b; = 0 for real x ( or, equivalently,

k' — —ir and a; = 0) and for z > L we must have ¥’ = k" = (\/2m(E — Vp)/h?)ix

then

B V2m(E -V
B ih2

V2m(Vy — E)

= > 0.

K

) _ V2m(E — Vo)V —1h* =

Note. Since ¢(x) = C(lz)(R), Y(z) is continuous and has a continuous first deriva-
tive (that’s what the “1” indicates), so imposing these conditions at z = 0 and

x = L yields the following:

lim o(x) = lim a;e*” = a; = lim o (z) = lim (ce™® + de™™*) = ¢+ d,

z—0— z—0— z—0t z—0t

lim dy(z) = lim kaje™ ™ = ka; = lim () = lim (tkce™ —ikde ™) = ik(c—d),

r—0- dx z—0— z—07F T z—07F

RZ
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lim ¢(z) = lim (ce™ + de ™) = ce™ + de~*F

z—L~ z—L~
. 01 01
= lim (z) = lim age’™ " = ape™’ = af”,
x—L* x—L*
. dy(x o . : o :
lim (z) = lim (ikce™ — ikde™™) = ik(ce* — de™*T)
z—L- dx z—L~
. d¢ . . k! v "
= lim () = lim (ik"aze™ ") = ik"aze™ " = —kage L.
z—L+ dx x—L*
That is, we need
ap=c+d kap = ik(c —d)
ce®t 4 de F = gge "t jk(ce*t — de”M) = —kage "E,

Eliminating A; in the top two equations gives k(c+ d) = ik(c — d) or (k — ik)c +
(k;k)d = 0. Eliminating as in the bottom tow equations gives —x(ce’L 4+ de ) =
ik(ce™ —de*L) or (k+ik)e et (k—ik)de * = 0 or (k+ik)e** et (k—ik)d = 0.

So we have two linear equations in two unknowns:

(k —ik)c
(k + ik)e“*Ec

+ (k+ik)d = 0 (5.15)
+ (k—1ik)d = 0.

Since the system is homogeneous, for a nontrivial solution (where ¢ # 0 # d) we

need the determinant of the coefficient matrix to be 0. So we want

Kk — 1k K+ 1k
o+ ke . = (k — ik)* — (k + ik)%** =0
K+ 1k)e” K—1

2ik L K — ik
e =——-1 . (5.18)

Kk + ik
Now k = V2mFE/h and k = \/Qm Vo — E)/h where A, m, and V|, are constants.

So we need to find values of E for which (5.18) holds. Now [e?*f| = 1, so we

or




L.5. Wave Mechanics of a Single Particle

14

— ik — ik — itk k — ik
have z+z = 1 and hence z+zk = €'Y = cosp + isinp. Now z+zkz—zk =
k? — 2ikk — k?

pE and so we need
o _nz—kz_ 2om(Vy — E/h? — 2me/h? _  W—-E)-FE _VO_QE_l_QE
PTRTRE 2m(V—E)Ri2me/2 (Vo—E)+ E Vo W,
so that 0 < E <V} is necessary, and
. 2kk \/Qm (Vo — E)/R)(V2mE/h) (Uo—E)E
in = = _
LR om(Vy — E) /12 + 2mE /2 “E)+ B

By (5.18) and our introduction of E%, we have e*¥ = ¢

_2\/% /(Vo 2\/ 1__
Vo 0

2ikL

so that we have 2¢ =

2kL + 2n7 (since e* has period 27i) or ¢ = kL + nm where n € Z. Since k =
L
V2mFE /h then ¢ = %\/me + nm for n € Z. We have cosp = 1 — 2E/V} from

above, so one value of ¢ is cos™

L
%\/ ImE = cos™!

1(1 — 2E/Vj,). This leads to the relationship:

(1 -2E/Vy) +nm wheren € Z (%)

(notice that this differs from Proguvecki’s equation in two places; see page

54).

(n+1m 4

ni —

y=cos™ (1 —2E/Vp) + nm

L

h

J2mly 5
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Notice from the graphs above that y = cos (1 — 2E/V}) + nr and y = % 2mE
will intersect, but we need for n such that n > 0 and n7 < %\/m So for each
appropriate n € Z we can solve (%) (numerically since it is a transcendental equa-
tion) for E and we denote this solution as F,,. Each eigenvalue F), is nondegenerate
(Prugovecki says on page 54) and the corresponding solution is 1, (X) to be given

next.

Note. We will express the coefficients in v, (x) in terms of ¢, (the coefficients

Ak — ik
From the first equation in system (5.15), we have d = MC or

ik,x
) k + ik

of e
z; zkc = /{i ¢ of ay, = ﬁcn. By the continuity of ¢ (z) at © = L we

have ce ' + de L = qqoe™ L or

¢n. By continuity of ¥(x) at x = 0 we have a1 = ¢+ d =

- . , Kk — 1k .
Uy = CenL—HkL +d€nL ik L _ Ce(/@—i-zk)L o : Ce(/@ 1k)L
K+ ik
or
o (Kn+ik,)L  HFn — ik, (Kop—ikn)L
gy =Cp | € — ¢ )
K, + tk,
So we have (notice K, = —ik,):

.

aj ne™* where k, = \/Qm(En — Vo)/h for x < 0
Vn(z) = 4 c,e*n? 4 d,e”* where k, = v2mE, /hfor 0 <z < L
asne” " where k, = \/Qm(En —Vo)/h for x > L

\
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or
( .
cni:—’,“zlle“"‘” where k, = \/2m(E, — V) /h for x < 0
() Ch (eik"‘” — Z"I—Ez"e_ikn"’”) where k, = 2mE,/hfor 0 <z < L

Kn+iky,

¢ <e(nn+ikn)L _ tin—iky e(nn—ikn)L) e where ky — /2m(En — Vo) /A

for x > L.

\

Finally, we can find the modulus of ¢, using the normalization condition that
[ |thn(2)|? dz = 1. We then have v, determined (up to a multiple of a complex
number of modulus 1) and then can use the 1, (x) functions to solve Schroedinger’s

equation for this V(x) as described in Theorem 1.5.C.

Note. Classically, a particle in a square potential well could not escape (that is,
if the particle has initial position z with 0 < x < L then it remains in 0 < z < L).
However, since [1,(z)]* is not 0 for z < 0 nor for # > L then this means (with
the probabilistic interpretation of Bohr) that there is a nonzero probability that a
particle starting in the potential well (that is, in 0 < z < L) can be located outside
the well in the future. The particle can “tunnel out” of the well in the quantum

mechanical setting.
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