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Chapter II. Measure Theory and Hilbert

Spaces of Functions

Note. In this chapter we explore abstract measure, integration, and additional

Hilbert space theory. In Sections II.5 and II.7 we consider applications to quantum

physics.

Section II.1. Measurable Spaces

Note. In this section we consider Boolean algebras and Boolean σ algebras of

sets and use these to define the Borel sets in Rn. We also introduce the idea of

a monotone class of sets and give conditions under which a monotone class and

Boolean σ algebra are equal.

Definition II.1.1. A nonempty class K of subset of a set X is called a Boolean

algebra (or field or additive class) if the following hold:

1. R ∪ S ∈ K whenever R,S ∈ K , and

2. R′ = X \ R ∈ K whenever R ∈ K .

The class K of subset of X is a Boolean σ algebra (or σ field) if in addition to being

a Boolean algebra it has the property that ∪∞
k=1

Sn ∈ K whenever S1, S2, . . . ∈ K .
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Note. The collection of sets which we measure will form a Boolean σ algebra. We

now state some elementary properties.

Theorem II.1.1. If the class K of subsets of a set X is a Boolean algebra, then

(a) the entire set X and the empty set ∅ belong to K ,

(b) the intersection R ∩ S belongs to K whenever R,S ∈ K , and

(c) the difference R \S and symmetric difference R4S = (R \S)∪ (S \R) belongs

to K whenever R,S ∈ K .

Note. Before proving Theorem II.1.1, we need some very elementary results from

set theory. You should be familiar with the following two lemmas.

Lemma II.1.1. If F is a family of sets and R is any given set, then

R ∩ (∪S∈FS) = ∪S∈F (R ∩ S).

Lemma II.1.2. DeMorgan’s Laws.

If F is a family of subsets of a set X , and if for any given set S we denote by

S′ = X \ S the complement of S with respect to X , then

(∪S∈F S)′ = ∩S∈FS′ and (∩S∈F S)′ = ∪S∈FS′.

Note. We can now prove Theorem II.1.1.
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Theorem II.1.2. For any given nonempty family F of subset of a set X there is

a unique smallest Boolean algebra A (F ) and a unique smallest Boolean σ algebra

Aσ(F ) containing F . That is, if A is a Boolean algebra containing F then

A (F ) ⊂ A and if Aσ is a Boolean algebra containing F then Aσ(F ) ⊂ Aσ.

A (F ) and Aσ(F ) are called, respectively, the Boolean algebra and the Boolean σ

algebra generated by the family F .

Note. We denote the set of all intervals in Rn, including degenerate intervals

consisting of only one point and ∅, as I n. So the nonempty elements of I n are

of the form

[a1, b1] × [a2, b2] × · · · × [an, bn]

where ai ≤ bi for i = 1, 2, . . . , n. We are interested in the Boolean algebra on Rn

generated by I n.

Theorem II.1.3. The family Bn
0

of all finite unions

I1 ∪ I2 ∪ · · · ∪ Ik where I1, I2, . . . , In ∈ I
n and k ∈ N

of intervals in I n is identical to the Boolean algebra A (I n).

Note. By Exercise II.1.5, we also have that Bn
0

= A (I n) equals the family of all

disjoint unions of intervals.

Definition. A subset of Rn in the Boolean σ algebra Aσ(I n) generated by I n is

a Borel set in n-dimensions.
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Note. We cannot extend Theorem II.1.3 to countable unions and Boolean σ alge-

bras. For example there is a Borel set in R, namely R \ Q, that is not a countable

union of intervals.

Note. Recall from Real Analysis 1 that the cardinality of the Borel sets on R is ℵ1

and the cardinality of the power set of R is ℵ2 (assuming the Continuum Hypothe-

sis), so that there are subsets of R that are no Borel sets (in fact, there are Lebesgue

measurable sets which are not Borel sets). See my online notes on “The Cardinality

of the Set of Lebesgue Measurable Sets” at http://faculty.etsu.edu/gardnerr/

5210/notes/Cardinality-of-M.pdf. However, as in the setting of R, the Borel

sets in Rn include all open and closed subsets of Rn.

Theorem II.1.4. Every open and every closed set in the Euclidean space Rn is a

Borel set.

Note. We now consider monotone classes of sets. This topic is not covered in Real

Analysis, but is required in probability theory. See my online notes on Measure The-

ory Based Probability of “Lebesgue-Stieltjes Measure and Distribution Functions”

at http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-1-4.pdf and

“Independent Random Variables” at http://faculty.etsu.edu/gardnerr/Proba

bility/notes/Prob-4-8.pdf.
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Definition II.1.2. An infinite sequence S1, S2, . . . of sets is called monotonically

increasing if S1 ⊂ S2 ⊂ · · · , and is called monotonically decreasing if X1 ⊃ S2 ⊃ · · · .

For a monotonically increasing sequence of sets we write limk→∞ Sk = ∪∞
k=1

Sk

and for monotonically decreasing sequence of sets we write limk→∞ Sk = ∩∞
k=1

Sk.

A nonempty class K of subsets of a set X is called a monotone class if every

monotone sequence S1, S2, . . . ∈ K has its limit in K .

Note. Very similar to the proof of Theorem II.1.2 for a Boolean algebra or Boolean

σ algebra generated by a family of sets, we can prove the following concerning

monotone class.

Theorem II.1.5. If F is a nonempty family of subsets of a set X , there is a unique

smallest monotone class M(F ) containing F , which is called the monotone class

generated by F .

Note. We now give two close relationships between a Boolean σ algebra and a

monotone class.

Theorem II.1.6. Every Boolean σ algebra is a monotone class, and every Boolean

algebra which is a monotone class is a Boolean algebra.
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Theorem II.1.7. If A is a Boolean algebra and M(A ) is the monotone class gen-

erated by A , then M(A ) is identical with the Boolean σ algebra Aσ(A ) generated

by the family A of sets.

Note. We now define a measurable space exactly as in Real Analysis 1; see my

online notes for “Measures and Measurable Sets” at http://faculty.etsu.edu/

gardnerr/5210/notes/17-1.pdf.

Note. In the next section we require more structure on a measurable space and

define a measure space.
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