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Section II.2. Measures and Measure Spaces

Note. In this section we define measure and measurable space. We define an

outer measure and the measure induced by an outer measure (with reference to the

Carathéodory splitting condition). We also consider Cartesian products of measure

spaces.

Definition. A set function F defined on a family K of sets into R (or C ) is

additive if for any disjoint S1, S2 ∈ K we have F (S1 ∪· S2) = F (S1) + F (S2). Set

function F is σ additive or countably additive if for any countable disjoint sequence

of sets S1, S2, . . . ∈ K we have F (∪·∞k=1
Sk) =

∑∞
k=1

F (Sk).

Definition II.2.1. A measure µ is an extended real-valued set function whose

domain of definition is a Boolean σ algebra A and which satisfies the following:

1. µ(∅) = 0,

2. µ(S) ≥ 0 for all S ∈ A , and

3. µ (∪·∞n=1Sn) =
∑∞

n=1
µ(Sn) if the sets S1, S2, . . . are disjoint.

Note. Progovečki defines “formal operations” on the extended real numbers R ∪

{∞}: a+∞ = ∞, a ·∞ = ∞ if a > 0, 0 ·∞ = 0, and a/∞ = 0 for all a ∈ R∪{∞}

(see page 67). These last two are questionable. . .
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Definition II.2.2. A measure space (X ,A , µ) is a measurable space (X ,A ) for

which a measure µ is defined on the Boolean σ algebra A . For any S ∈ A , the

number µ(S) is the measure of set S. If µ(S) < ∞ then S has finite measure. If

the set S is a countable union ∪∞
n=1Sn of sets Sn of finite measure, then the measure

µ(S) of S is σ finite. If µ(X ) < ∞ then µ is a finite measure, and if the measure

µ(X ) is σ finite then µ is a σ finite measure.

Note. A probability measure µp on a measurable space (X ,A ) where µp(S)

represents the probability that an event (an element of X ) will be in set S. So we

must have µp(X ) = 1. The most common probability measure we will use is Pt

defined on B1
0 (the family of all finite unions of intervals in R; see Theorem II.1.3)

as Pt(I) =
∫

I
|ψ(x, t)|2 dx for interval I and Pt(B) = Pt(I1) + Pt(I2) + · · · + Pt(Ik)

for B = ∪· k
`=1
I` ∈ B1

0 , where ψ(x, t) is the state of a system and Pt(B) is the

probability of finding the system within B at time t.

Definition II.2.3. An extended real-valued set function F is continuous from

above (respectively, below) if for every monotonically decreasing (respectively, in-

creasing) sequence S1, S2, . . . of sets from the domain of definition of F we have

F (limk→∞ Sk) = limk→∞ F (Sk) whenever F (limk→∞ Sk) is defined and, in the case

that S1, S2, . . . is decreasing, whenever |F (Sn)| <∞ for at least one value of n.
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Note. In the case of S1, S2, . . . decreasing, if we do not have |F (Sn)| < ∞ for

at least one value of n, then we may not have F (limk→∞ Sk) = limk→∞ F (Sk), as

is to be shown in Exercise II.2.4 (consider F on B1
0 where F ([a, b]) = b − a and

Sn = [n,∞)). With the finiteness requirement in Definition II.2.3, we can prove

the following.

Theorem II.2.1. Every measure is continuous from above and below.

Theorem II.2.2. Every finite, nonnegative, additive set function F on a Boolean

σ algebra A and satisfying F (∅) = 0, which is either continuous from below at

every R ∈ A or continuous from above at ∅ ∈ A, is necessarily also σ additive or

“countably additive” (i.e., µ is a measure).

Note. Prugovečki observes that it would be “convenient” if we could extend a

measure on a Boolean algebra A to a Boolean σ algebra A σ(A ) generated by A ,

getting the measure space (X ,Aσ(A ), µ). This is addressed in the next theorem.

We consider this in Real Analysis 2 (MATH 5220) where we consider measures in-

duced by outer measures on a power set and set functions on a collection of sets (for

a “nice” result, the set function needs to be a premeasure and the collection of sets

needs to be a semiring). See my online notes for “The Carathéodory Measure In-

duced by an Outer Measure” (http://faculty.etsu.edu/gardnerr/5210/notes/

17-3.pdf) and “The Carathéodory-Hahn Theorem: The Extension of a Premea-

sure to a Measure” (http://faculty.etsu.edu/gardnerr/5210/notes/17-5.pdf).
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Theorem II.2.3. Let µ be a measure defined on the Boolean algebra A of subsets

of a given set X . The set function

µ = inf

{

∞
∑

k=1

µ(Sk)

∣

∣

∣

∣

∣

R ⊂ ∪∞
k=1Sk, Sk ∈ A for all n ∈ N

}

for R ∈ Aσ = Aσ(A ), is a measure on Aσ which coincides with µ on A : µ(S) =

µ(S) for all S ∈ A . If µ is a σ finite measure, then µ is also σ finite, and µ is the

only measure on Aσ which coincides with µ on A . The measure µ is called the

extension of µ.

Note. We now lay out a proof of Theorem II.2.3, but need some preliminary results

and another definition.

Lemma II.2.A. Let A be a Boolean algebra on set X and let µ be a measure on

A . Define extended real-valued set function

µ+(R) = inf

{

∞
∑

k=1

µ(Sk)

∣

∣

∣

∣

∣

R ⊂ ∪∞
k=1Sk, Sk ∈ A for all k ∈ N

}

on the power set GX of X . Sets S1, S2, . . . ∈ A such that R ⊂ ∪∞
k=1

Sk are said to

cover R. For any R1, R2, . . . ∈ GX we have

µ+ (∪∞
n=1Rn) ≤

∞
∑

n=1

µ+(Rn).

Definition II.2.4. A nonnegative set function M defined on each subset R ∈ GX

of set X , for which M(∅) = 0 and which is countably subadditive, i.e. for which

M (∪∞
n=1Sn) ≤

∞
∑

n=1

M(Sn)
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for any sequence S1, S2, . . . ∈ GX , is called an outer measure on X . A subset S

of X is said to be measurable with respect to the outer measure M , or simple

M -measurable, if for all R ⊂ X we have

M(R) = M(R ∩ S) +M(R ∩ S′).

This condition is called the Carathéodory splitting condition.

Note. By Lemma II.2.A we see that µ+ is an outer measure on X . In the proof

of Theorem II.2.3 we will see that µ+ is a measure on Aσ = Aσ(A ). We first need

two lemmas.

Lemma II.2.1. If M is an outer measure on the power set GX of X then the

class AM of all M -measurable sets S ∈ GX is a Boolean σ algebra, and the outer

measure M restricted to AM is a measure.

Lemma II.2.2. Every set R in the Boolean σ algebra Aσ = Aσ(A ) generated by

A is µ+ measurable. That is, Aσ ⊂ Aµ+.

Note. We now have the equipment to prove Theorem II.2.3.
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