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Chapter 2. Special Relativity: The

Geometry of Flat Spacetime

Note. Classically (i.e in Newtonian mechanics), space is thought of as

1. unbounded and infinite,

2. 3-dimensional and explained by Euclidean geometry, and

3. “always similar and immovable” (Newton, Principia Mathematica,

1687).

This would imply that one could set up a system of spatial coordinates

(x, y, z) and describe any dynamical event in terms of these spatial

coordinates and time t.

Note. Newton’s Three Laws of Motion:

1. (The Law of Inertia) A body at rest remains at rest and a body in

motion remains in motion with a constant speed and in a straight

line, unless acted upon by an outside force.

2. The acceleration of an object is proportional to the force acting upon

it and is directed in the direction of the force. That is, ~F = m~a.

3. To every action there is an equal and opposite reaction.
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Note. Newton also stated his Law of Universal Gravitation in Prin-

cipia:

“Every particle in the universe attracts every other particle

in such a way that the force between the two is directed

along the line between them and has a magnitude propor-

tional to the product of their masses and inversely propor-

tional to the square of the distance between them.”

Symbolically, F =
GMm

r2 where F is the magnitude of the force, r the

distance between the two bodies, M and m are the masses of the bodies

involved and G is the gravitational constant (6.67× 10−8 cm./(g sec2)).

Assuming only Newton’s Law of Universal Gravitation and Newton’s

Second Law of Motion, one can derive Kepler’s Laws of Planetary Mo-

tion.
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2.1 Inertial Frames of Reference

Definition. A frame of reference is a system of spatial coordinates and

possibly a temporal coordinate. A frame of reference in which the Law

of Inertia holds is an inertial frame or inertial system. An observer at

rest (i.e. with zero velocity) in such a system is an inertial observer.

Note. The main idea of an inertial observer in an inertial frame is that

the observer experiences no acceleration (and therefore no net force). If

S is an inertial frame and S ′ is a frame (i.e. coordinate system) moving

uniformly relative to S, then S ′ is itself an inertial frame. Frames S and

S ′ are equivalent in the sense that there is no mechanical experiment

that can be conducted to determine whether either frame is at rest or in

uniform motion (that is, there is no preferred frame). This is called

the Galilean (or classical) Principle of Relativity.

Note. Special relativity deals with the observations of phenomena by

inertial observers and with the comparison of observations of inertial

observers in equivalent frames (i.e. NO ACCELERATION!). General

relativity takes into consideration the effects of acceleration (and there-

fore gravitation) on observations.
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2.2 The Michelson-Morley Experiment

Note. Sound waves need a medium though which to travel. In 1864

James Clerk Maxwell showed that light is an electromagnetic wave.

Therefore it was assumed that there is an ether which propagates light

waves. This ether was assumed to be everywhere and unaffected by

matter. This ether could be used to determine an absolute reference

frame (with the help of observing how light propagates through the

ether).

Note. The Michelson-Morley experiment (circa 1885) was performed

to detect the Earth’s motion through the ether as follows:

The viewer will see the two beams of light which have traveled

along different arms display some interference pattern. If the system
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is rotated, then the influence of the “ether wind” should change the

time the beams of light take to travel along the arms and therefore

should change the interference pattern. The experiment was performed

at different times of the day and of the year. NO CHANGE IN THE

INTERFERENCE PATTERN WAS OBSERVED!

Note. In 1892, Fitzgerald proposed that an object moving through

the ether wind with velocity v experiences a contraction in the direc-

tion of the ether wind of
√

1 − v2/c2. That is, in the diagram above, L1

is contracted to L1
√

1 − v2/c2 and then we get t1 = t2 when L1 = L2,

potentially explaining the results of the Michelson-Morley experiment.

This is called the Lorentz-Fitzgerald contraction. Even under this as-

sumption, “it turns out” that the Michelson-Morley apparatus with

unequal arms will exhibit a pattern shift over a 6 month period as the

Earth changes direction in its orbit around the Sun. In 1932, Kennedy

and Thorndike performed such an experiment and detected no such

shift.

Conclusion. The speed of light is constant and the same in all direc-

tions and in all inertial frames.
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2.3 The Postulates of Relativity

Note. Albert Einstein published “Zur Elektrodynamik bewegter Körper”

(On the Electrodynamics of Moving Bodies) in Annalen der Physik (An-

nals of Physics) 17 (1905). In this paper, he established the SPECIAL

THEORY OF RELATIVITY! I quote (from “The Principles of

Relativity” by H. A. Lorenz, A. Einstein, H. Minkowski, and H. Weyl,

published by Dover Publications):

“...the same laws of electrodynamics and optics will be valid

for all frames of reference for which the equations of me-

chanics hold good. We raise this conjecture (the purport of

which will hereafter be called the “Principle of Relativity”)

to the status of a postulate, and also introduce another

postulate, which is only apparently irreconcilable with the

former, namely, that light is always propagated in empty

space with a definite velocity c which is independent of the

state of motion of the emitting body.”

In short:

P1. All physical laws valid in one frame of reference are equally valid

in any other frame moving uniformly relative to the first.

P2. The speed of light (in a vacuum) is the same in all inertial frames

of reference, regardless of the motion of the light source.

From these two simple (and empirically varified) assumptions arises the

beginning of the revolution that marks our transition from classical to

modern physics!
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2.4 Relativity of Simultaneity

Note. Suppose two trains T and T ′ pass each other traveling in op-

posite directions (this is equivalent to two inertial frames moving uni-

formly relative to one another). Also suppose there is a flash of lighten-

ing (an emission of light) at a certain point. Mark the points on trains

T and T ′ where this flash occurs at A and A′ respectively. “Next,”

suppose there is another flash of lightning and mark the points B and

B′. Suppose point O on train T is midway between points A and B,

AND that point O′ on train T ′ is midway between points A′ and B′.

An outsider might see:

Suppose an observer at point O sees the flashes at points A and B occur

at the same time. From the point of view of O the sequence of events

is:
(1) Both flashes occur,

A, O, B opposite

A′, O′, B′, resp.
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(2) Wavefront from

BB′ meets O′

(3) Both wavefronts

meet O

(4) Wavefront from

AA′ meets O′

From the point of view of an observer at O′, the following sequence of

events are observed:
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(1) Flash occurs

at BB′

(2) Flash occurs

at AA′

(3) Wavefront from

BB′ meets O′
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(4) Wavefronts from

AA′ and BB′ meet O

(5) Wavefront from

AA′ meets O′

Notice that the speed of light is the same in both frames of reference.

However, the observer on train T sees the flashes occur simultaneously,

whereas the observer on train T ′ sees the flash at BB′ occur before the

flash at AA′. Therefore, events that appear to be simultaneous in one

frame of reference, may not appear to be simultaneous in another. This

is the relativity of simultaneity.
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Note. The relativity of simultaneity has implications for the mea-

surements of lengths. In order to measure the length of an object, we

must measure the position of both ends of the object simultaneously.

Therefore, if the object is moving relative to us, there is a problem.

In the above example, observer O sees distances AB and A′B′ equal,

but observer O′ sees AB shorter than A′B′. Therefore, we see that

measurements of lengths are relative!
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2.5 Coordinates

Definition. In 3-dimensional geometry, positions are represented by

points (x, y, z). In physics, we are interested in events which have both

time and position (t, x, y, z). The collection of all possible events is

spacetime.

Definition. With an event (t, x, y, z) in spacetime we associate the

units of cm with coordinates x, y, z. In addition, we express t (time) in

terms of cm by multiplying it by c. (In fact, many texts use coordinates

(ct, x, y, z) for events.) These common units (cm for us) are called

geometric units.

Note. We express velocities in dimensionless units by dividing them

by c. So for velocity v (in cm/sec, say) we associate the dimensionless

velocity β = v/c. Notice that under this convention, the speed of light

is 1.

Note. In an inertial frame S, we can imagine a grid laid out with a

clock at each point of the grid. The clocks can by synchronized (see

page 118 for details). When we mention that an object is observed in

frame S, we mean that all of its parts are measured simultaneously

(using the synchronized clocks). This can be quite different from what

an observer at a point actually sees.
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Note. From now on, when we consider two inertial frames S and S ′

moving uniformly relative to each other, we adopt the conventions:

1. The x− and x′−axes (and their positive directions) coincide.

2. Relative to S, S ′ is moving in the positive x direction with velocity

β.

3. The y− and y′−axes are always parallel.

4. The z− and z′−axes are always parallel.

We call S the laboratory frame and S ′ the rocket frame:

Assumptions. We assume space is homogeneous and isotropic, that

is, space appears the same at all points (on a sufficiently large scale)

and appears the same in all directions.

Note. In the next section, we’ll see that things are much different in

the direction of motion.
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2.6 Invariance of the Interval

Note. In this section, we define a quantity called the “interval” be-

tween two events which is invariant under a change of spacetime coor-

dinates from one inertial frame to another (analogous to “distance” in

geometry). We will also derive equations for time and length dilation.

Note. Consider the experiment described in Figure II-8:

In inertial frame S ′ a beam of light is emitted from the origin, travels a

distance L, hits a mirror and returns to the origin. If ∆t′ is the amount

of time it takes the light to return to the origin, then L = ∆t′/2 (recall

that t′ is multiplied by c in order to put it in geometric units). An

observer in frame S sees the light follow the path of Figure II-8b in

time ∆t. Notice that the situation here is not symmetric since the

laboratory observer requires two clocks (at two positions) to determine

∆t, whereas the rocket observer only needs one clock (so the Principle
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of Relativity does not apply). In geometric units, we have: (∆t/2)2 =

(∆t′/2)2 + (∆x/2)2 or (∆t′)2 = (∆t)2 − (∆x)2 with β the velocity of

S ′ relative to S, we have β = ∆x/∆t and so ∆x = β∆t and (∆t′)2 =

(∆t)2 − (β∆t)2 or

∆t′ =
√

1 − β2∆t. (78)

Therefore we see that under the hypotheses of relativity, time is not

absolute and the time between events depends on an observer’s motion

relative to the events.

Note. You might be more familiar with equation (78) in the form:

∆t =
1√

1 − β2∆t′

where ∆t′ is an interval of time in the rocket frame and ∆t is how the

laboratory frame measures this time interval. Notice ∆t ≥ ∆t′ so that

time is dilated (lengthened).

Note. Since β = v/c, for v � c, β ≈ 0 and ∆t′ ≈ ∆t.

Definition. Suppose events A and B occur in inertial frame S at

(t1, x1, y1, z1) and (t2, x2, y2, z2), respectively, where y1 = y2 and z1 =

z2. Then define the interval (or proper time) between A and B as

∆τ =
√

(∆t)2 − (∆x)2 where ∆t = t2 − t1 and ∆x = x2 − x1.
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Note. As shown above, in the S ′ frame

(∆t′)2 − (∆x′)2 = (∆t)2 − (∆x)2

(recall ∆x′ = 0). So ∆τ is the same in S ′. That is, the interval is

invariant from S to S ′. As the text says “The interval is to spacetime

geometry what the distance is to Euclidean geometry.”

Note. We could extend the definition of interval to motion more com-

plicated than motion along the x−axis as follows:

∆τ = {(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2}1/2

or

(interval)2 = (time separation)2 − (space separation)2.
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Note. Let’s explore this “time dilation” in more detail. In our example,

we have events A and B occuring in the S ′ frame at the same position

(∆x′ = 0), but at different times. Suppose for example that events A

and B are separated by one time unit in the S ′ frame (∆t′ = 1). We

could then represent the ticking of a second hand on a watch which is

stationary in the S ′ frame by these two events. An observer in the S

frame then measures this ∆t′ = 1 as

∆t =
1√

1 − β2∆t′.

That is, an observer in the S frame sees the one time unit stretched

(dilated) to a length of
1√

1 − β2 ≥ 1 time unit. So the factor
1√

1 − β2

shows how much slower a moving clock ticks in comparison to a sta-

tionary clock. The Principle of Relativity implies that on observer in

frame S ′ will see a clock stationary in the S frame tick slowly as well.

However, the Principle of Relativity does not apply in our example

above (see p. 123) and both an observer in S and an observer in S ′

agree that ∆t and ∆t′ are related by

∆t =
1√

1 − β2∆t′.

So both agree that ∆t ≥ ∆t′ in this case. This seems strange ini-

tially, but will make more sense when we explore the interval below.

(Remember, ∆x 6= 0.)

Definition. An interval in which time separation dominates and (∆τ)2 >

0 is timelike. An interval in which space separation dominates and

(∆τ)2 < 0 is spacelike. An interval for which ∆τ = 0 is lightlike.
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Note. If it is possible for a material particle to be present at two events,

then the events are separated by a timelike interval. No material object

can be present at two events which are separated by a spacelike interval

(the particle would have to go faster than light). If a ray of light can

travel between two events then the events are separated by an interval

which is lightlike. We see this in more detail when we look at spacetime

diagrams (Section 2.8).

Note. If an observer in frame S ′ passes a “platform” (all the train talk

is due to Einstein’s original work) of length L in frame S at a speed of

β, then a laboratory observer on the platform sees the rocket observer

pass the platform in a time ∆t = L/β. As argued above, the rocket

observer measures this time period as ∆t′ = ∆t
√

1 − β2. Therefore, the

rocket observer sees the platform go by in time ∆t′ and so measures

the length of the platform as

L′ = β∆t′ = β∆t
√

1 − β2 = L
√

1 − β2.

Therefore we see that the time dilation also implies a length contraction:

L′ = L
√

1 − β2. (83)

Note. Equation (83) implies that lengths are contracted when an ob-

ject is moving fast relative to the observer. Notice that with β ≈ 0,

L′ ≈ L.
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Example (Exercise 2.6.2). Pions are subatomic particles which de-

cay radioactively. At rest, they have a half-life of 1.8×10−8 sec. A pion

beam is accelerated to β = 0.99. According to classical physics, this

beam should drop to one-half its original intensity after traveling for

(0.99)(3× 108)(1.8 × 10−8) ≈ 5.3m. However, it is found that it drops

to about one-half intensity after traveling 38m. Explain, using either

time dilation or length contraction.

Solution. Time is not absolute and a given amount of time ∆t′ in

one inertial frame (the pion’s frame, say) is observed to be dilated in

another inertial frame (the particle accelerator’s) to ∆t = ∆t′/
√

1 − β2.

So with ∆t′ = 1.8 × 10−8sec and β = 0.99,

∆t =
1√

1 − .992
(1.8 × 10−8sec) = 1.28 × 10−7sec.

Now with β = .99, the speed of the pion is (.99)(3 × 108m/sec) =

2.97 × 108m/sec and in the inertial frame of the accelerator the pion

travels

(2.97× 108m/sec)(1.28× 10−7sec) = 38m.

In terms of length contraction, the accelerator’s length of 38m is con-

tracted to a length of

L′ = L
√

1 − β2 = (38m)
√

1 − .992 = 5.3m

in the pion’s frame. With v = .99c, the pion travels this distance in

5.3m

(.99)(3× 108m/sec)
= 1.8 × 10−8sec.

This is the half-life and therefore the pion drops to 1/2 its intensity

after traveling 38m in the accelerator’s frame.
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2.7 The Lorentz Transformation

Note. We seek to find the transformation of the coordinates (x, y, z, t)

in an inertial frame S to the coordinates (x′, y′, z′, t′) in inertial frame

S ′. Throughout this section, we assume the x and x′ axes coincide, S ′

moves with velocity β in the direction of the positive x axis, and the

origins of the systems coincide at t = t′ = 0. See Figure II-9, page 128.

Note. Classically, we have the relations

x = x′ + βt

y = y′

z = z′

t = t′

Definition. The assumption of homogeneity says that there is no pre-

ferred location in space (that is, space looks the same at all points [on

a sufficiently large scale]). The assumption of isotropy says that there

is no preferred direction in space (that is, space looks the same in every

direction).
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Note. Under the assumptions of homogeneity and isotropy, the rela-

tions between (x, y, z, t) and (x′.y′, z′, t′) must be linear (throughout,

everything is done in geometric units!):

x = a11x
′ + a12y

′ + a13z
′ + a14t

′

y = a21x
′ + a22y

′ + a23z
′ + a24t

′

z = a31x
′ + a32y

′ + a33z
′ + a34t

′

t = a41x
′ + a42y

′ + a43z
′ + a44t

′.

If not, say y = ax′2, then a rod lying along the x−axis of length xb−xa

would get longer as we moved it out the x−axis, contradicting homo-

geneity. Similarly, relationships involving time must be linear (since the

length of a time interval should not depend on time itself, nor should

the length of a spatial interval).

Note. We saw in Section 2.5 that lengths perpendicular to the direction

of motion are invariant. Therefore

y = y′

z = z′

Note. x does not depend on y′ and z′. Therefore, the coefficients

a12 and a13 are 0. Similarly, isotropy implies a42 = a43 = 0. We have

reduced the system of equations to

x = a11x
′ + a14t

′ (85)

t = a41x
′ + a44t

′ (86)
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Definition. The transformation relating coordinates (x, y, z, t) in S to

coordinates (x′, y′, z′, t′) in S ′ given by

x =
x′ + βt′√

1 − β2

y = y′

z = z′

t =
βx′ + t′√

1 − β2

is called the Lorentz Transformation.

Note. With β � 1 and β2 ≈ 0 we have

x = x′ + βt′

t = t′

(in geometric units, x and x′ are small compared to t and t′ and βx′ is

negligible compared to t′, but βt′ is NOT negligible compared to x′).

Note. By the Principle of Relativity, we can invert the Lorentz Trans-

formation simply by interchanging x and t with x′ and t′, respectively,

and replacing β with −β!
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Note. If we deal with pairs of events separated in space and time, we

denote the differences in coordinates with ∆’s to get

∆x =
∆x′ + β∆t′√

1 − β2 (91a)

∆t =
β∆x′ + ∆t′√

1 − β2 (91b)

With ∆x′ = 0 in (91b) we get the equation for time dilation. With a

rod of length L = ∆x in frame S, the length measured in S ′ requires a

simultaneous measurement of the endpoints (∆t′ = 0) and so from (91a)

L = L′/
√

1 − β2 or L′ = L
√

1 − β2, the equation for length contraction.

Example (Exercise 2.7.14). Substitute the transformation Equation

(91) into the formula for the interval and verify that

(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 = (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2.

Solution. With ∆y = ∆z = 0 we have

(∆t)2 −(∆x)2 − (∆y)2 − (∆z)2

= (∆t)2 − (∆x)2 =


β∆x′ + ∆t′√

1 − β2




2

−

∆x′ + β∆t′√

1 − β2




2

=
β2(∆x′)2 + 2β∆x′∆t′ + (∆t′)2 − (∆x′)2 − 2β∆x′∆t′ − β2(∆t′)2

1 − β2

=
(∆x′)2(β2 − 1) + (∆t′)2(1 − β2)

1 − β2

= (∆t′)2 − (∆x′)2 = (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2

since ∆y′ = ∆z′ = 0.
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2.8 Spacetime Diagrams

Note. We cannot (as creatures stuck in 3 physical dimensions) draw

the full 4 dimensions of spacetime. However, for rectilinear or planar

motion, we can depict a particle’s movement. We do so with a spacetime

diagram in which spatial axes (one or two) are drawn as horizontal axes

and time is represented by a vertical axis. In the xt−plane, a particle

with velocity β is a line of the form x = βt (a line of slope 1/β):

Two particles with the same spacetime coordinates must be in collision:

Note. The picture on the cover of the text is the graph of the orbit of

the Earth as it goes around the Sun as plotted in a 3-D spacetime.
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Definition. The curve in 4-dimensional spacetime which represents the

relationships between the spatial and temporal locations of a particle

is the particle’s world-line.

Note. Now let’s represent two inertial frames of reference S and S ′

(considering only the xt−plane and the x′t′−plane). Draw the x and t

axes as perpendicular (as above). If the systems are such that x = 0

and x′ = 0 coincide at t = t′ = 0, then the point x′ = 0 traces out the

path x = βt in S. We define this as the t′ axis:

The hyperbola t2−x2 = 1 in S is the same as the “hyperbola” t′2−x′2 =

1 in S ′ (invariance of the interval). So the intersection of this hyperbola

and the t′ axis marks one time unit on t′. Now from equation (90b)

(with t′ = 0) we get t = βx and define this as the x′ axis. Again we
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calibrate this axis with a hyperbola (x2 − t2 = 1):

We therefore have:

and so the S ′ coordinate system is oblique in the S spacetime diagram.

Note. In the above representation, notice that the larger β is, the more

narrow the “first quadrant” of the S ′ system is and the longer the x′

and t′ units are (as viewed from S).

Note. Suppose events A and B are simultaneous in S ′ They need not

be simultaneous in S. Events C and D simultaneous in S need not be
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simultaneous in S ′.

Note. A unit of time in S is dilated in S ′ and a unit of time in S ′ is

dilated in S.
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Note. Suppose a unit length rod lies along the x axis. If its length

is measured in S ′ (the ends have to be measured simultaneously in S ′)

then the rod is shorter. Conversely for rods lying along the x′ axis.

Example (Exercise 2.8.4). An athlete carrying a pole 16m long runs

toward the front door of a barn so rapidly that an observer in the barn

measures the pole’s length as only 8m, which is exactly the length of

the barn. Therefore at some instant the pole will be observed entirely

contained within the barn. Suppose that the barn observer closes the

front and back doors of the barn at the instant he observes the pole

entirely contained by the barn. What will the athlete observe?

Solution. We have two events of interest:

A = The front of the pole is at the back of the barn.

B = The back of the pole is at the front of the barn.

From Exercise 2.8.3, the observer in the barn (frame S) observes these

events as simultaneous (each occuring at tAB = 3.08×10−8sec after the
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front of the pole was at the front of the barn). However, the athlete

observes event A after he has moved the pole only 4m into the barn.

So for him, event A occurs when t′A = 1.54×10−8sec. Event B does not

occur until the pole has moved 16m (from t′ = 0) and so event B occurs

for the athlete when t′B = 6.16× 10−8sec. Therefore, the barn observer

observes the pole totally within the barn (events A and B), slams the

barn doors, and observes the pole start to break through the back of

the barn all simultaneously. The athlete first observes event A along

with the slamming of the back barn door and the pole starting to break

through this door (when t′ = 1.54 × 10−8sec) and THEN observes the

front barn door slam at t′B = 6.16 × 10−8sec. The spacetime diagram

is:

A occurs at

t′ = 1.54× 10−8 sec

B occurs at

t = 3.08× 10−8 sec

Since the order of events depends on the frame of reference, the appar-

ent paradox is explained.
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2.10 The Twin Paradox

Note. Suppose A and B are two events in spacetime separated by a

timelike interval (whose y and z coordinates are the same). Joining

these events with a straight line produces the world-line of an inertial

observer present at both events. Such an observer could view both

events as occuring at the same place (say at x = 0) and could put these

two events along his t−axis.

Note. Oddly enough, in a spacetime diagram under Lorentz geom-

etry, a straight line gives the longest distance (temporally) between

two points. This can be seen by considering the fact that the interval

(∆τ)2 = (∆t)2− (∆x)2 is invariant. Therefore, if we follow a trajectory

in spacetime that increases ∆x, it MUST increase ∆t. Figure II-19b

illustrates this fact:

That is, the non-inertial traveler (the one undergoing accelerations and

therefore the one not covered by special relativity) from A to B ages

less than the inertial traveler between these two events.
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Example (Jack and Jill). We quote from page 152 of the text: “Let

us imagine that Jack is the occupant of a laboratory floating freely in

intergalactic space. He can be considered at the origin of an inertial

frame of reference. His twin sister, Jill, fires the engines in her rocket,

initially alongside Jack’s space laboratory. Jill’s rocket is accelerated

to a speed of 0.8 relative to Jack and then travels at that speed for

three years of Jill’s time. At the end of that time, Jill fires powerful

reversing engines that turn her rocket around and head it back toward

Jack’s laboratory at the same speed, 0.8. After another three-year

period, Jill returns to Jack and slows to a halt beside her brother.

Jill is then six years older. We can simplify the analysis by assuming

that the three periods of acceleration are so brief as to be negligible.

The error introduced is not important, since by making Jill’s journey

sufficiently long and far, without changing the acceleration intervals,

we could make the fraction of time spent in acceleration as small as

we wish. Assume Jill travels along Jack’s x−axis. In Figure II-20 (see

below), Jill’s world-line is represented on Jack’s spacetime diagram. It

consists of two straight line segments inclined to the t−axis with slopes

+0.8 and −0.8, respectively. For convenience, we are using units of

years for time and light-years for distance.”

Note. Because of the change in direction (necessary to bring Jack and

Jill back together), no single inertial frame exists in which Jill is at rest.

But her trip can be described in two different inertial frames. Take the

first to have t′ axis x = βt = 0.8t (in Jack’s frame). Then at t = 5 and

t′ = 3, Jill turns and travels along a new t′ axis of x = −0.8t + 10 (in

Jack’s frame). We see that upon the return, Jack has aged 10 years,
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but Jill has only aged 6 years. This is an example of the twin paradox.

Note. One might expect that the Principle of Relativity would imply

that Jack should also have aged less than Jill (an obvious contradiction).

However, due to the asymmetry of the situation (the fact that Jack is

inertial and Jill is not) the Principle of Relativity does not apply.

Note. Consider the lines of simultaneity for Jill at the “turning point”:

So our assumption that the effect of Jill’s acceleration is inconsequential

is suspect! Jill’s “turning” masks a long period of time in Jacks’s frame

(t = 1.8 to t = 8.2).
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2.11 Temporal Order and Causality

Note. Suppose a flash of light is emitted at the origin of a spacetime

diagram. The wavefront is determined by the lines x = t and x = −t

where t > 0 (we use geometric units). We label the region in the upper

half plane that is between these two lines as region F . Extending

the lines into the lower half plane we similarly define region P . The

remaining two regions we label E.

Note. Events in F are separated from O by a timelike interval. So

O could influence events in F and we say O is causally connected to

the events in F . In fact, if A is an event in the interior of F , then

there is an inertial frame S ′ in which O and A occur at the same place.

The separation between O and A is then only one of time (and as we

claimed, O and A are separated by a timelike interval). The point A

will lie in the “future” relative to O, regardless of the inertial frame.

Therefore, region F is the absolute future relative to O.
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Note. Similarly, events in P can physically influence O and events

in P are causally connected to O. The region P is the absolute past

relative to O.

Note. Events in region E are separated from O by a spacelike interval.

For each event C in region E, there is an inertial frame S ′ in which C

and O are separated only in space (and are simultaneous in time). This

means that the terms “before” and “after” have no set meaning between

O and an event in E. The region E is called elsewhere.

Note. We can extend these ideas and represent two physical dimen-

sions and one time dimension. We then find the absolute future relative

to an event to be a cone (called the future light cone). The past light

cone is similarly defined. We can imagine a 4-dimensional version where

the absolute future relative to an event is a sphere expanding in time.
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