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INTRODUCTION

My definition of (pure) mathematics is: The use of logical principles to deduce

implications (traditionally called lemmas, theorems, and corollaries) from a col-

lection of consistent assumptions (called postulates or axioms). The axioms and

theorems make claims about objects which are defined within the mathematical

system. These objects, however, sometimes are informally defined — after all, we

can only define things in terms of other things. To avoid circular definitions, we

must take some definitions as intuitive and fundamental (this is often the case with

such objects as “sets” and “points”), but this is to be kept to a minimum and the

properties of these objects are elaborated in the axioms and theorems.

My definition would fall under the “metamathematical” view (i.e., view about

math) known as formalism. Formalism is “the assertion of the possibility and de-

sirability of banishing intuitions by showing formal systems to be entirely adequate

to the business of mathematics” [Goldstein, page 134]. This view of math was

championed by David Hilbert.



DAVID HILBERT

David Hilbert (1862–1943)

Hilbert was interested in stripping math (geometry in particular) of all intu-

ition — he wanted to make it simply the manipulation of symbols according to

certain logical rules. He stated that “mathematics is a game played according to

certain simple rules with meaningless marks on paper” [Goldstein, page 136]. An-

other famous quote attributed to Hilbert is: “One must be able to say at all times

— instead of points, straight lines, and planes — tables, chairs, and beer mugs.”

Hilbert’s point is that the axiomatic systems of mathematics are not about any-

thing in the “real world.” In a sense, they are worlds unto themselves and their

only existence is in our minds (personally, I largely agree with this philosophy of

mathematics).

To put things in a historical context, Hilbert’s work on this subject takes place

around 1900. This is some 70–80 years after the “discovery” (or is it an “inven-

tion”?) of non-Euclidean geometry. It was thought for over 2000 years that the



only logical and “true” geometry was that of Euclid. So the discovery of alterna-

tive geometries in the early 1800’s were a great surprise (and the source of some

controversy). But geometry wasn’t the only area of mathematics experiencing a

revolution. William Rowan Hamilton (1805–65) created the quaterions (the first

example of a non-commutative algebra) in the 1840s. This result, along with the

recent acceptance of complex numbers, lead to a liberation of algebra from thinking

of numbers in terms of absolute rules. It was realized that “the rules of algebra

could be formulated independently of the objects to which they were applied; this

discovery set algebra free to invent and study new structure, and a very rapid de-

velopment set in around the middle of the nineteenth century” [Sondheimer and

Rogerson, page 75]. This rapid development included the study of abstract groups,

vector spaces, and matrices. The resulting philosophical implication is that the

objects of math are maybe not absolutely determined by some intuitive constraints

— maybe they are simply the results of certain almost arbitrary assumptions.

Some of the geometric proofs of Euclid’s Elements are not entirely adequate

by “modern” mathematical standards (there are unstated assumptions concerning

lines, for example). So to sort of “clean up” Euclid, Hilbert published Foundations

of Geometry in 1899 (an online PDF copy can be found on the Project Gutenberg

webpage (accessed 6/25/2022). This is “said to have been the most influential work

in geometry since Euclid” [Goldstein, page 137]. This is quite a claim since the

work on the foundations of non-Euclidean geometry had appeared a few decades

earlier!

In 1900, Hilbert gave a talk at the Second International Congress of Mathe-

maticians in which he tried to set the tone of math for the 20th century. Hilbert’s

http://www.gutenberg.org/etext/17384
http://www.gutenberg.org/etext/17384


attitude at the time seems to be that the proofs of the consistency of geometry and

arithmetic were imminent. It appeared that, after a few more details were ironed

out, math would become a clean rigorous, totally-unintuitive endeavor! But. . . some

of the details were more complicated than they appeared on the surface. (Coin-

cidentally, physics of the time was in much the same situation. . . just before the

revolutions of relativity and quantum mechanics.)

Enter Gottlob Frege and Bertrand Russell.

FREGE, RUSSELL, AND PRINCIPIA

Gottlob Frege (1848–1925) A page from Fundamental

Laws of Arithmetic

Two monumental attempts were made around 1900 to base all of mathematics

(starting with arithmetic) on logic and set theory. In 1893 Gottlob Frege published

Fundamental Laws of Arithmetic. A more famous work is due to Bertrand Russell

and Alfred North Whitehead called Principia Mathematica (1910) (an online copy



is available on the University of Michigan Historical Math Collection webpage (ac-

cessed 6/25/2022). The level of detail was so great that it took over 200 pages to

prove that 1 + 1 = 2. The plan was to base arithmetic on set theory — after all,

what could be more reliable than set theory?

Bertrand Russell (1872–1970) A page from Principia

It turns out that the set theory of 1900 wasn’t as flawless as was assumed!

Russell himself was instrumental in finding a crack in the foundations. One way to

explain Russell’s Paradox is as follows:

Imagine a town with a barber. The barber cuts the hair of all of those

who do not cut their own hair. Who cuts the barber’s hair? If he does

not cut his own hair, then he must cut his own hair (since that is his

job). If he does cut his own hair, then he cannot cut his own hair since

his job is to cut the hair of those who do not cut their own hair.

Another more set theoretic way is to consider the set E of all sets that are not

members of themselves. The question then is: Is set E a member of itself? If E

is a member of itself, then it cannot me a member of itself since it only consists of

http://www.hti.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAT3201.0001.001


such sets. If E is not a member of itself, then it must be a member of itself by its

own definition. Therefore such a set cannot exist. The moral of Russell’s Paradox

is that you cannot just define a set any old way you want! This lead to a revision

of axiomatic set theory and a specific protocol by which new sets could be defined

in terms of existing sets. With these slight changes, the foundation of set theory

should be solid, and the work of building mathematical knowledge could go on.

Presumably, the formalist’s dream of having an axiomatic system within which all

“mathematical truths” could be derived was on the horizon.

Enter Kurt Gödel.

KURT GODEL

Kurt Gödel (1906–1978)

In 1931, a 25 year old mathematician at the University of Vienna published a

26 page paper titled “On Formally Undecidable Propositions of Principia Mathe-

matica and Related Systems.” Initially there was not widespread appreciation of



the importance of this research, but its significance would become very well-known.

Gödel addressed two properties of axiomatic systems: consistence and complete-

ness. Consistence means that no contradiction can be derived within the system.

Completeness is a bit harder to explain.

The rules of manipulation in a formal axiomatic system are of these sorts: (1)

the rules that specify what the symbols are (the “alphabet” of the system), (2)

the rules that specify how the symbols can be put together to make “well-formed

formulas” (or ‘WFF’s) which include the claims of the system (the lemmas, corol-

laries, and theorems), and (3) the rules of inference that specify which WFFs can

be derived from other WFFs [Goldstein, page 86]. An axiomatic system is complete

if a truth value can be put on every WFF. What this means is that every mean-

ingful statement can either be proven to be true or false. (In geometry, examples

of WFFs are: “Two lines, parallel to a third, are parallel to each other” [true in

Euclidean geometry], and “The sum of the measures of the angles of a triangle is

less than 180◦” [false in Euclidean geometry]. An example of a statement which

involves the objects of geometry, but is not a WFF [since it is meaningless] is: “All

points are parallel.”)

Gödel’s two main results are:

Gödel’s First Incompleteness Theorem. There are provably unprovable but

nonetheless true propositions in any formal system that contains elementary arith-

metic, assuming that system to be consistent.

Gödel’s Second Incompleteness Theorem. The consistency of a formal sys-

tem that contains arithmetic can’t be formally proved with that system [Goldstein,

page 183].



What Gödel has shown is that there are meaningful statements in axiomatic sys-

tems (which include arithmetic) which can neither be proved to be true nor proved

to be false. Such statements are said to be undecidable. A specific example of this is

the Continuum Hypothesis which addressed the existence of a set of real numbers S

such that |N| < |S| < |R|. This idea of undecidability was disturbing to a number

of pure mathematicians of the time. After all, these results, if not contradicting

the work of Frege and Russell, is in direct contrast to the spirit of these works.

However, other mathematicians took the results in stride with the attitude that

mathematics will continue to go forward and undecidable propositions are now just

part of the terrain.

What Gödel did not show was that all formal axiomatic systems are incom-

plete. In fact, Gödel’s Ph.D. dissertation was on the completeness of a system

called “predicate calculus.” Also, Gödel does not say that the consistency of a

formal system of arithmetic cannot be proved by any means; only that it cannot

be proved within the system itself. Gödel also said nothing about sociological or

cultural ideas. However, there is a movement (which I will refer to as “radical

postmodernism”) to employ the ideas from mathematics and physics (in partic-

ular, relativity and quantum mechanics) in the study of societies, cultures, and

politics. This reflects a profound misunderstanding of the meaning of the math-

ematical and physical statements. As mentioned above, Gödel does not propose

incompleteness/undecidability in all settings (not even in all mathematical set-

tings)! Einstein’s theory of relativity does not imply that “everything is relative”

(in fact, the special theory of relativity deals explicitly with a quantity that is an

absolute between different frames of reference). Quantum theory only deals with



the atomic level and certainly not the societal level (and even at the atomic level, it

does not necessarily imply random behavior — certain interpretations of quantum

theory are still deterministic). In response to the radical postmodernist, Sokal and

Bricmont [page x] state:

“We are sometimes accused of being arrogant scientists, but our view

of the hard sciences’ role is in fact rather modest. Wouldn’t it be

nice (for us mathematicians and physicists, that is) if Gödel’s theorem

or relativity theory did have immediate and deep implications for the

study of society? Or if the axiom of choice could be used to study

poetry? Or if topology had something to do with the human psyche?

But alas, it is not the case.”

Alan Sokal

Alan Sokal is famous (or infamous) for publishing an article “Transgressing the

Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity” in the

research journal Social Text in 1996. Sokal had witnessed the proliferation of stud-

ies making bizarre applications of math and physics, as mentioned above. In his



paper, meant as a parody of this type of work, Sokal claims that there is no physi-

cally real world [Sokal and Bricmont, page 2]: “physical ‘reality’, no less than social

‘reality’, is at bottom a social and linguistic construct.” His arguments, intention-

ally nonsensical, passed the refereeing process of the cultural-studies journal Social

Text and was even published in a special issue devoted to rebutting the criticisms

of postmodernism and social constructivism. Many researchers in the humanities

and social sciences wrote to Sokal to thank him for what he had done. Others were

not so happy!

PEANO’S AXIOMS OF ARITHMETIC

Giuseppe Peano (1858–1932)

For the sake of illustration, let’s look at an axiomatic system for elementary

arithmetic. In 1899, the Italian mathematician Giuseppe Peano reduced arithmetic

to five axioms [Nagel and Newman, page 114]:

Axiom 1. 0 is a number.

Axiom 2. The immediate successor of a number is a number.



Axiom 3. 0 is not the immediate successor of a number.

Axiom 4. No two numbers have the same immediate successor.

Axiom 5. Any property belonging to 0, and also to the immediate successor of

every number that has the property, belongs to all numbers.

What Peano is doing here is actually defining the nonnegative integers {0, 1, 2, 3, . . .}.

Axiom 5 is called the Principle of Mathematical Induction.

Recall that a positive integer is prime if it’s only factors are 1 and itself. The

first several prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37. A couple of

statements from elementary arithmetic concerning prime numbers are:

Twin Prime Conjecture. There are an infinite number of twin primes. (Two

primes are twin primes if they differ by 2 — for example, 3 and 5, 5 and 7, 11 and

13, 6797227×215328−1 and 6797227×215328 +1 [T. Forbes, “A Large Pair of Twin

Primes,” Math. Comp. 66 (1997), 451–455]). The current record holder seems to

be: 3756801695685×2666669−1 and 3756801695685×2666669+1 (which have 200,700

digits— see University Tennessee at Martin webpage (accessed 6/25/2022).

The Goldbach Conjecture. Every even integer greater than or equal to 4 can

be written as the sum of two primes. This has been verified up to around 4× 1018,

according to Tomás Oliveira e Silva webpage (accessed 6/25/2022).

So far, there is no proof for either of these conjectures. Nor are there proofs of

their negations (a counterexample would do for this in the case of the negation of

the Goldbach Conjecture). Are these results true, false, or undecidable?

http://primes.utm.edu/largest.html
http://sweet.ua.pt/tos/goldbach.html
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