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Chapter 3. Forms
3.1. σ-Sesquilinear Forms—Proofs of Theorems
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Lemma 3.1

Lemma 3.1. Let U be a subspace of Vk(F). If b is a non-degenerate
σ-sesquilinear form on Vk(F) then dim U + dim U⊥ = k.

Proof. Let {e1, e2, . . . , er} be a basis for U. Define linear maps αi for
i = 1, 2, . . . , r as αi (v) = b(ei , v) (if b is an inner product, then αi (v) is
the projection of v onto basis vector ei ).

If
∑n

i=1 λiαi = 0 then, by definition,
∑r

i=1 λiαi (v) = 0 for all v ∈ Vk(F).
Therefore, because b is linear in the first position,

0 =
r∑

i=1

λiαi (v) =∼r
i=1 λib(ei , v) = b

(
n∑

i=1

λiei , v

)

and so
∑r

i=1 λiei = 0 since b is nondegenerate by hypothesis. Since
{e1, e2, . . . , er} be a basis for U, then the ei are linearly independent and
so we must have λ1 = λ2 = · · · = λr = 0. This implies that α1, α2, . . . , αr

are linearly independent.
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Theorem 4.1

Theorem 4.1. Every Boolean expression is equivalent to one in
conjunctive normal form, and to one in disjunctive normal form.

Proof.
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