History of Geometry

Chapter 2. The Elements of Euclid

2.1. Book I—Proofs of Theorems

History of Geometry

January 20, 2022

Euclid, Book I Proposition 1

Euclid, Book I Proposition 1. On a given finite straight line AB to construct an equilateral triangle.

Proof. By Postulate 3, we can construct a circle Δ centered at point A and passing through point B. Also by Postulate 3, construct a circle E centered at point B and passing through point A. Let Γ be a point of intersection of circles Δ and E. Construct a line segment joining points Γ and A, and construct a line segment joining Γ and B (using Postulate 1). Then the distance $A\Gamma$ is equal to $B\Gamma$ and equal to AB (by the definition of circle, Book I Definition 15).

January 20, 2022

Euclid, Book I Proposition 2

Euclid, Book I Proposition 2. To place at a given point A a straight line AE equal to a given straight line $B\Gamma$.

Proof. Use Euclid I.1 to construct an equilateral triangle $AB\Delta$ on segment AB. By Postulate 3, construct the circle with center B and passing through point Γ . Extend line segment ΔB from point B until it intersects this circle at, say, point H (Postulate 2 allows this). Also by Postulate 3, construct a second circle with center

 Δ passing through H. Extend line segment

 ΔA from point A until it intersects this second circle at, say, point E (Postulate 2). The distance $B\Gamma$ equals the distance BH (because of properties of the first circle) and distance ΔH equals distance ΔE (because of properties of the second circle). So

 $\Delta E = \Delta A + AE = \Delta H = \Delta B + BH$ or AE = BH, since $\Delta B = \Delta A$.

Euclid, Book I Proposition 5

Euclid, Book I Proposition 5. If in a triangle, a = b, then $\alpha = \beta$.

Proof. Here, we present Euclid's proof and consider Figure 2.2(a). By Postulate 2 we can extend line segments CA and CB "continuously" to points F and G such that, by Euclid I.2, AF = BG (without loss of generality, CA < CBand we can extend CA and produce a segment CF longer than CB and then we can extend CB to produce a segment CG equal in length to CB by Euclid I.2; from this we have AF = BG).

Figure 2.2(a)

Next, by Postulate 2 we can introduce segments FB and AG. Now by Euclid I.4 ("side-angle-side"), triangles FCB and GCA are equal. So, corresponding angles and sides of the triangles are equal, so that $\alpha + \delta = \beta + \varepsilon$, $\eta = \zeta$, and FB = GA. Again by Euclid I.4, triangle AFB and BGA are equal and so $\delta = \varepsilon$. Since $\alpha + \delta = \beta + \varepsilon$ and $\delta = \varepsilon$, then $\alpha = \beta$, as claimed.

H

Euclid, Book I Proposition 7. Consider the two triangles of Figure 2.3(a), with the same base AB and with the third vertex on the same side of the base. If a = a' and b = b', then points C and D are the same, C = D.

Proof. We present Euclid's proof. ASSUME $C \neq D$. Since triangle DAC is isosceles by hypothesis, then by Euclid I.5 we have $\alpha + \beta = \gamma$. Similarly, triangle DBC is isosceles and, again by Euclid I.5, $\beta = \gamma + \delta$. Since $\alpha > 0$ then $\gamma > \beta$, and since $\delta > 0$ then $\gamma < \beta$, a CONTRADICTION. So the assumption that $c \neq D$ is false, and hence C = D as claimed.

Figure 2.3(a)

History of Geometry

January 20, 2022 6 /

idaly 20, 2022 0 / .

Fuclid Book I Proposition

Euclid, Book I Proposition 8

Euclid, Book I Proposition 8. If two triangles *ABC* and *DEF* have sides of equal lengths, then they also have equal angles.

Proof. Ostermann and Wanner credit the proof they give to Philo of Byzantium (circa 280 BCE-circa 220 BCE), declaring it "more elegant" than Euclid's proof (though they do not give a specific reference). We move triangle ABC onto triangle DEF in such a way that the line segment BC is placed on segment EF (this is possible since these are the same length) and the point A is moved onto point G on the opposite side of EF to D; see Figures 2.3(b) and (c).

Figure 2.3(b) and (c)

January 20, 2022 7 / 16

Fuelid Rook I Proposition

Euclid, Book I Proposition 8 (continued)

Euclid, Book I Proposition 8. If two triangles *ABC* and *DEF* have sides of equal lengths, then they also have equal angles.

Proof (continued). So DE = DG and triangle DEG is isosceles. Hence, by Euclid I.5, $\alpha = \beta$. Similarly, triangle DFG is also isosceles and $\gamma = \delta$. So $\beta + \delta = \alpha + \gamma$; that is, the angle at A (equal to $\beta + \delta$) equals the angle at D (equal to $\alpha + \gamma$). Similar arguments (with different movements) show the other corresponding angles are also equal.

Figure 2.3(b) and (c)

Euclid, Book I Proposition 13

Euclid, Book I Proposition 13

Euclid I.13. Let the line *AB* cut the line *CD*. With α and β as the two resulting angles on the same side of line *CD*, we have $\alpha + \beta = 2$ \Box .

Proof. Let B be the point of intersection of the lines. If the lines are perpendicular, then $\alpha=\beta=\mbox{$\stackrel{\square}{=}$}$ and we are done. So without loss of generality, we may assume that one of α and β is greater than $\mbox{$\stackrel{\square}{=}$}$, say $\beta>\mbox{$\stackrel{\square}{=}$}$. Euclid I.11 gives the existence of a perpendicular to CD through point B. With η as the angle between this perpendicular and line AB, we have that $\beta=\mbox{$\stackrel{\square}{=}$}+\eta$ and $\alpha+\eta=\mbox{$\stackrel{\square}{=}$}$ (see Figure 2.5). Combining these two equations gives $\alpha+\eta+\beta=2\mbox{$\stackrel{\square}{=}$}+\eta$, or $\alpha+\beta=2\mbox{$\stackrel{\square}{=}$}$, as claimed. $\mbox{$\stackrel{\square}{=}$}$

Figure 2.5

Euclid, Book I Proposition 14

Euclid, Book I Proposition 14. Let line segment *DB* and line segment BA determine an angle β . If segment BC makes an angle α with segment BA where point C is exterior to the first angle. If $\alpha + \beta = 2$ then C lies on the line DB.

Proof. Let E line on the line DB and let γ be the angle between segments BA and BE. Then by Euclid I.13, $\gamma + \beta = 2 \perp$. By hypothesis, $\alpha + \beta = 2$ α , so $\gamma + \beta = \alpha + \beta$ (by Postulate 4) and hence $\gamma = \alpha$. So points E and C lie on the same line (i.e., lie on the same side of the common angle). Since E lies on line DB then we have that C lies on line DB, as claimed.

Figure 2.6

History of Geometry

Euclid, Book I Proposition 16

Euclid, Book I Proposition 16. If one side of a triangle is extended at C. the exterior angle is greater than both angles in the triangle opposite to C.

Proof. Let E be the midpoint of AC, which can be found by Euclid I.10. By Postulate 1, line segment BE exists. By Postulate 2, line segment BE can be extended to a point F such that BE = EF. The "grey" angles at point E of Figure 2.8 are opposite angles and so by Euclid I.15 are equal. So by Euclid I.4 (side-angle-side) the two grey triangles are equal. Therefore the grey angle at point C is α and is "obviously" smaller than δ (we could use Common Notion 5 here); that is, $\delta > \alpha$, as claimed. Similarly, by bisecting side BC and introducing a

Figure 2.8

triangle with a vertex at point C, we can use the other angle of size δ to show $\delta > \beta$, as claimed.

Euclid, Book I Proposition 15

Euclid, Book I Proposition 15. If two lines cut one another, they make the opposite angles equal to one another.

Proof. Consider the opposite angles α and β , and introduce angle γ as given in Figure 2.7. By Euclid I.13 we have $\alpha + \gamma = 2 \, \Box$ and $\gamma + \beta = 2 \, \Box$. So $\alpha + \gamma = \gamma + \beta$ (by Postulate 4). Therefore $\alpha = \beta$, as claimed.

Figure 2.7

January 20, 2022

Euclid, Book I Proposition 27

Euclid, Book I Proposition 27. If some line cuts two line a and b such that alternate interior angles α and β are equal, then lines a and b are parallel, denoted $a \parallel b$.

Proof. Let points E and F be the points of intersection of the cutting line with lines a and b (see Figure 2.10). ASSUME that lines a and b are not parallel; then they meet at some point G. Without loss of generality, suppose point G is on side of the cutting line in which angle β lies, as in Figure 2.10. Then *EGF* is a triangle with α as an exterior angle. So by Euclid I.16, $\alpha > \beta$. But this CONTRADICTS the assumption that $\alpha = \beta$. So the assumption that lines a and b are not parallel is false, and hence lines a and b are parallel, as claimed.

Euclid, Book I Proposition 29

Euclid, Book I Proposition 29. Parallel lines cut by some line, have alternate interior angles are equal.

Proof. Let a and b be parallel lines and let α and β be alternate interior angles that result from the cutting line (see Figure 2.11). ASSUME $\alpha > \beta$. Introduce angle γ as in Figure 2.11. By Euclid I.13 we have $\alpha + \gamma = 2$ \Box , and hence $\beta + \gamma < 2$ \Box . By the Parallel Postulate (Postulate 5), lines a and b meet (and do so on the side of the cutting line containing angles β and γ), CONTRADICTING the hypothesis that $a \parallel b$. So the assumption that $\alpha > \beta$ is false and hence we have $\alpha \leq \beta$. Similarly, if we assume $\alpha < \beta$ we can show that $\alpha \geq \beta$. Hence $\alpha = \beta$, as claimed. \Box

Figure 2.11

History of Geometry

January 20, 2022

2022 14 /

Euclid, Book I Proposition 3

Euclid, Book I Proposition 31

Euclid, Book I Proposition 31. To draw a parallel to a given line a through a given point A not on the a.

Proof. By Euclid I.12, we can construct a perpendicular to line a through point A. By Euclid I.11, we can construct a perpendicular b to the perpendicular through point A. We then have that the alternate interior angles for lines a and b are both right angles and hence by Euclid I.27 line b is parallel to line a and passes through point A, as needed.

History of Geometry

Figure 2.13

January 20, 2022

Euclid, Book I Proposition 30

Euclid, Book I Proposition 30

Euclid, Book I Proposition 30. For any three (distinct) lines a, b, c, if $a \parallel b$ and $b \parallel a$ then $a \parallel c$.

Proof. Let the angles between the parallel lines a,b,c and the cutting line be α,β,γ , respectively (see Figure 2.12). If we introduce the angles opposite α,β,γ as α',β',γ' (not pictured in Figure 2.12) then by Euclid I.15 we have $\alpha=\alpha'$, $\beta=\beta'$, and $\gamma=\gamma'$. By Euclid I.29, $\alpha=\beta'$ since $a\parallel b$, and $\beta=\gamma'$ since $b\parallel c$. Hence, $\alpha=\beta'=\beta=\gamma'$. Finally, by Euclid I.27, we have $a\parallel c$, as claimed.

Figure 2.12

History of Geometry January 20, 2022 15 / 16