History of Geometry

Chapter 2. The Elements of Euclid

2.1. Book I—Proofs of Theorems

Table of contents

(1) Euclid, Book I Proposition 1
(2) Euclid, Book I Proposition 2
(3) Euclid, Book I Proposition 5
(4) Euclid, Book I Proposition 7
(5) Euclid, Book I Proposition 8
(6) Euclid, Book I Proposition 13
(7) Euclid, Book I Proposition 14
(8) Euclid, Book I Proposition 15
(9) Euclid, Book I Proposition 16
(10) Euclid, Book I Proposition 27
(11) Euclid, Book I Proposition 29
(12) Euclid, Book I Proposition 30
(13) Euclid, Book I Proposition 31

Euclid, Book I Proposition 1

Euclid, Book I Proposition 1. On a given finite straight line $A B$ to construct an equilateral triangle.

Proof. By Postulate 3, we can construct a circle Δ centered at point A and passing through point B. Also by Postulate 3, construct a circle E centered at point B and passing through point A. Let Γ be a point of intersection of circles Δ and E.

Euclid, Book I Proposition 1

Euclid, Book I Proposition 1. On a given finite straight line $A B$ to construct an equilateral triangle.

Proof. By Postulate 3, we can construct a circle Δ centered at point A and passing through point B. Also by Postulate 3 , construct a circle E centered at point B and passing through point A. Let Γ be a point of intersection of circles Δ and E. Construct a line segment joining points Γ and A, and construct a line segment joining Γ and B (using Postulate 1). Then the distance $A \Gamma$ is equal to $B \Gamma$ and equal to $A B$ (by the definition of circle, Book I Definition 15).

Euclid, Book I Proposition 1

Euclid, Book I Proposition 1. On a given finite straight line $A B$ to construct an equilateral triangle.

Proof. By Postulate 3, we can construct a circle Δ centered at point A and passing through point B. Also by Postulate 3 , construct a circle E centered at point B and passing through point A. Let Γ be a point of intersection of circles Δ and E. Construct a line segment joining points Γ and A, and construct a line segment joining Γ and B (using Postulate 1). Then the distance $A \Gamma$ is equal to $B \Gamma$ and equal to $A B$ (by the definition of circle, Book I Definition 15).

Euclid, Book I Proposition 2

Euclid, Book I Proposition 2. To place at a given point A a straight line $A E$ equal to a given straight line $B \Gamma$.

Proof. Use Euclid I. 1 to construct an equilateral triangle $A B \Delta$ on segment $A B$. By Postulate 3, construct the circle with center B and passing through point Γ. Extend line segment ΔB from point B until it intersects this circle at, say, point H (Postulate 2 allows this).

Euclid, Book I Proposition 2

Euclid, Book I Proposition 2. To place at a given point A a straight line $A E$ equal to a given straight line $B \Gamma$.

Proof. Use Euclid I. 1 to construct an equilateral triangle $A B \Delta$ on segment $A B$. By Postulate 3, construct the circle with center B and passing through point Γ. Extend line segment ΔB from point B until it intersects this circle at, say, point H (Postulate 2 allows this). Also by Postulate 3, construct a second circle with center

Δ passing through H. Extend line segment
ΔA from point A until it intersects this second circle at, say, point E (Postulate 2). The distance $В Г$ equals the distance $B H$ (because of properties of the first circle) and distance ΔH equals distance ΔE (because of properties of the second circle). So $\Delta E=\triangle A+A E=\Delta H=\Delta B+B H$ or $A E=B H$, since $\Delta B=\triangle A$.

Euclid, Book I Proposition 2

Euclid, Book I Proposition 2. To place at a given point A a straight line $A E$ equal to a given straight line $B \Gamma$.

Proof. Use Euclid I. 1 to construct an equilateral triangle $A B \Delta$ on segment $A B$. By Postulate 3, construct the circle with center B and passing through point Γ. Extend line segment ΔB from point B until it intersects this circle at, say, point H (Postulate 2 allows this). Also by Postulate 3, construct a second circle with center

Δ passing through H. Extend line segment
ΔA from point A until it intersects this second circle at, say, point E (Postulate 2). The distance $B \Gamma$ equals the distance $B H$ (because of properties of the first circle) and distance ΔH equals distance ΔE (because of properties of the second circle). So
$\Delta E=\Delta A+A E=\Delta H=\Delta B+B H$ or $A E=B H$, since $\Delta B=\Delta A$.

Euclid, Book I Proposition 5

Euclid, Book I Proposition 5. If in a triangle, $a=b$, then $\alpha=\beta$.
Proof. Here, we present Euclid's proof and
consider Figure 2.2(a). By Postulate 2 we can
extend line segments $C A$ and $C B$ "continuously"
to points F and G such that, by Euclid I.2,
$A F=B G$ (without loss of generality, $C A<C B$
and we can extend $C A$ and produce a segment
CF longer than CB and then we can extend
$C B$ to produce a segment $C G$ equal in length
to $C B$ by Euclid I.2; from this we have $A F=B G$).

Euclid, Book I Proposition 5

Euclid, Book I Proposition 5. If in a triangle, $a=b$, then $\alpha=\beta$.
Proof. Here, we present Euclid's proof and consider Figure 2.2(a). By Postulate 2 we can extend line segments $C A$ and $C B$ "continuously" to points F and G such that, by Euclid I.2, $A F=B G$ (without loss of generality, $C A<C B$ and we can extend $C A$ and produce a segment $C F$ longer than $C B$ and then we can extend $C B$ to produce a segment $C G$ equal in length to $C B$ by Euclid I.2; from this we have $A F=B G$).
 Next, by Postulate 2 we can introduce segments $F B$ and $A G$. Now by Euclid I. 4 ("side-angle-side"), triangles $F C B$ and GCA are equal. So, corresponding angles and sides of the triangles are equal, so that $\alpha+\delta=\beta+\varepsilon, \eta=\zeta$, and $F B=G A$. Again by Euclid I.4, triangle AFB and $B G A$ are equal and so $\delta=\varepsilon$. Since $\alpha+\delta=\beta+\varepsilon$ and $\delta=\varepsilon$, then $\alpha=\beta$, as claimed .

Euclid, Book I Proposition 5

Euclid, Book I Proposition 5. If in a triangle, $a=b$, then $\alpha=\beta$.
Proof. Here, we present Euclid's proof and consider Figure 2.2(a). By Postulate 2 we can extend line segments $C A$ and $C B$ "continuously" to points F and G such that, by Euclid I.2, $A F=B G$ (without loss of generality, $C A<C B$ and we can extend $C A$ and produce a segment $C F$ longer than $C B$ and then we can extend $C B$ to produce a segment $C G$ equal in length to $C B$ by Euclid I.2; from this we have $A F=B G$).

Figure 2.2(a) Next, by Postulate 2 we can introduce segments $F B$ and $A G$. Now by Euclid I. 4 ("side-angle-side"), triangles FCB and GCA are equal. So, corresponding angles and sides of the triangles are equal, so that $\alpha+\delta=\beta+\varepsilon, \eta=\zeta$, and $F B=G A$. Again by Euclid I.4, triangle $A F B$ and $B G A$ are equal and so $\delta=\varepsilon$. Since $\alpha+\delta=\beta+\varepsilon$ and $\delta=\varepsilon$, then $\alpha=\beta$, as claimed.

Euclid, Book I Proposition 7

Euclid, Book I Proposition 7. Consider the two triangles of Figure 2.3(a), with the same base $A B$ and with the third vertex on the same side of the base. If $a=a^{\prime}$ and $b=b^{\prime}$, then points C and D are the same, $C=D$.

Proof. We present Euclid's proof. ASSUME $C \neq D$. Since triangle $D A C$ is isosceles by hypothesis, then by Euclid I. 5 we have $\alpha+\beta=\gamma$. Similarly, triangle $D B C$ is isosceles and, again by Euclid I.5, $\beta=\gamma+\delta$. Since $\alpha>0$ then $\gamma>\beta$, and since $\delta>0$ then $\gamma<\beta$, a CONTRADICTION. So the assumption that $c \neq D$ is false, and hence $C=D$ as claimed

Euclid, Book I Proposition 7

Euclid, Book I Proposition 7. Consider the two triangles of Figure 2.3(a), with the same base $A B$ and with the third vertex on the same side of the base. If $a=a^{\prime}$ and $b=b^{\prime}$, then points C and D are the same, $C=D$.

Proof. We present Euclid's proof. ASSUME $C \neq D$. Since triangle DAC is isosceles by hypothesis, then by Euclid I. 5 we have $\alpha+\beta=\gamma$. Similarly, triangle $D B C$ is isosceles and, again by Euclid I.5, $\beta=\gamma+\delta$. Since $\alpha>0$ then $\gamma>\beta$, and since $\delta>0$ then $\gamma<\beta$, a CONTRADICTION. So the assumption that $c \neq D$ is false, and hence $C=D$ as claimed.

Figure 2.3(a)

Euclid, Book I Proposition 7

Euclid, Book I Proposition 7. Consider the two triangles of Figure 2.3(a), with the same base $A B$ and with the third vertex on the same side of the base. If $a=a^{\prime}$ and $b=b^{\prime}$, then points C and D are the same, $C=D$.

Proof. We present Euclid's proof. ASSUME $C \neq D$. Since triangle DAC is isosceles by hypothesis, then by Euclid I. 5 we have $\alpha+\beta=\gamma$. Similarly, triangle $D B C$ is isosceles and, again by Euclid I.5, $\beta=\gamma+\delta$. Since $\alpha>0$ then $\gamma>\beta$, and since $\delta>0$ then $\gamma<\beta$, a CONTRADICTION. So the assumption that $c \neq D$ is false, and hence $C=D$ as claimed.

Figure 2.3(a)

Euclid, Book I Proposition 8

Euclid, Book I Proposition 8. If two triangles $A B C$ and $D E F$ have sides of equal lengths, then they also have equal angles.
Proof. Ostermann and Wanner credit the proof they give to Philo of Byzantium (circa 280 BCE-circa 220 BCE), declaring it "more elegant" than Euclid's proof (though they do not give a specific reference). We move triangle $A B C$ onto triangle $D E F$ in such a way that the line segment $B C$ is placed on segment $E F$ (this is possible since these are the same length) and the point A is moved onto point G on the opposite side of $E F$ to D; see Figures 2.3(b) and (c).

Euclid, Book I Proposition 8

Euclid, Book I Proposition 8. If two triangles $A B C$ and $D E F$ have sides of equal lengths, then they also have equal angles.
Proof. Ostermann and Wanner credit the proof they give to Philo of Byzantium (circa 280 BCE-circa 220 BCE), declaring it "more elegant" than Euclid's proof (though they do not give a specific reference). We move triangle $A B C$ onto triangle $D E F$ in such a way that the line segment $B C$ is placed on segment $E F$ (this is possible since these are the same length) and the point A is moved onto point G on the opposite side of $E F$ to D; see Figures 2.3(b) and (c).

Euclid, Book I Proposition 8

Euclid, Book I Proposition 8. If two triangles $A B C$ and $D E F$ have sides of equal lengths, then they also have equal angles.
Proof. Ostermann and Wanner credit the proof they give to Philo of Byzantium (circa 280 BCE-circa 220 BCE), declaring it "more elegant" than Euclid's proof (though they do not give a specific reference). We move triangle $A B C$ onto triangle $D E F$ in such a way that the line segment $B C$ is placed on segment $E F$ (this is possible since these are the same length) and the point A is moved onto point G on the opposite side of $E F$ to D; see Figures 2.3(b) and (c).

Figure 2.3(b) and (c)

Euclid, Book I Proposition 8 (continued)

Euclid, Book I Proposition 8. If two triangles $A B C$ and $D E F$ have sides of equal lengths, then they also have equal angles.

Proof (continued). So $D E=D G$ and triangle $D E G$ is isosceles. Hence, by Euclid I.5, $\alpha=\beta$. Similarly, triangle DFG is also isosceles and $\gamma=\delta$. So $\beta+\delta=\alpha+\gamma$; that is, the angle at A (equal to $\beta+\delta$) equals the angle at D (equal to $\alpha+\gamma$). Similar arguments (with different movements) show the other corresponding angles are also equal.

Figure 2.3(b) and (c)

Euclid, Book I Proposition 13

Euclid I.13. Let the line $A B$ cut the line $C D$. With α and β as the two resulting angles on the same side of line $C D$, we have $\alpha+\beta=2$ ․

Proof. Let B be the point of intersection of the lines. If the lines are perpendicular, then $\alpha=\beta=\boldsymbol{\square}$ and we are done.

Euclid, Book I Proposition 13

Euclid I.13. Let the line $A B$ cut the line $C D$. With α and β as the two resulting angles on the same side of line $C D$, we have $\alpha+\beta=2$ 亿.

Proof. Let B be the point of intersection of the lines. If the lines are perpendicular, then $\alpha=\beta=\measuredangle$ and we are done. So without loss of generality, we may assume that one of α and β is greater than \measuredangle, say $\beta>\boldsymbol{\square}$. Euclid 1.11 gives the existence of a perpendicular to $C D$ through point B. With η as the angle between this perpendicular and line $A B$, we have that $\beta=\boldsymbol{\square}+\eta$ and $\alpha+\eta=\boldsymbol{\square}$ (see Figure 2.5). Combining these two equations gives $\alpha+\eta+\beta=2 \boldsymbol{\square}+\eta$, or $\alpha+\beta=2 \boldsymbol{\square}$, as claimed. \square

Euclid, Book I Proposition 13

Euclid I.13. Let the line $A B$ cut the line $C D$. With α and β as the two resulting angles on the same side of line $C D$, we have $\alpha+\beta=2$ 亿.
Proof. Let B be the point of intersection of the lines. If the lines are perpendicular, then $\alpha=\beta=\measuredangle$ and we are done. So without loss of generality, we may assume that one of α and β is greater than \measuredangle, say $\beta>\measuredangle$. Euclid I. 11 gives the existence of a perpendicular to $C D$ through point B. With η as the angle between this perpendicular and line $A B$, we have that $\beta=\measuredangle+\eta$ and $\alpha+\eta=\measuredangle$ (see Figure 2.5). Combining these two equations gives $\alpha+\eta+\beta=2 \measuredangle+\eta$, or $\alpha+\beta=2 \measuredangle$, as claimed.

Figure 2.5

Euclid, Book I Proposition 13

Euclid I.13. Let the line $A B$ cut the line $C D$. With α and β as the two resulting angles on the same side of line $C D$, we have $\alpha+\beta=2$ 亿.
Proof. Let B be the point of intersection of the lines. If the lines are perpendicular, then $\alpha=\beta=\measuredangle$ and we are done. So without loss of generality, we may assume that one of α and β is greater than \measuredangle, say $\beta>\measuredangle$. Euclid I. 11 gives the existence of a perpendicular to $C D$ through point B. With η as the angle between this perpendicular and line $A B$, we have that $\beta=\measuredangle+\eta$ and $\alpha+\eta=\measuredangle$ (see Figure 2.5). Combining these two equations gives $\alpha+\eta+\beta=2 \measuredangle+\eta$, or $\alpha+\beta=2 \measuredangle$, as claimed.

Figure 2.5

Euclid, Book I Proposition 14

Euclid, Book I Proposition 14. Let line segment $D B$ and line segment $B A$ determine an angle β. If segment $B C$ makes an angle α with segment $B A$ where point C is exterior to the first angle. If $\alpha+\beta=2 \measuredangle$ then C lies on the line $D B$.

Proof. Let E line on the line $D B$ and let γ be the angle between segments $B A$ and $B E$. Then by Euclid I.13, $\gamma+\beta=2 \boldsymbol{Z}$. By hypothesis, $\alpha+\beta=2$ L, so $\gamma+\beta=\alpha+\beta$ (by Postulate 4) and hence $\gamma=\alpha$. So points E and C lie on the same line (i.e., lie on the same side of the common angle). Since E lies on line $D B$ then we have that C lies on line $D B$, as claimed.

Euclid, Book I Proposition 14

Euclid, Book I Proposition 14. Let line segment $D B$ and line segment $B A$ determine an angle β. If segment $B C$ makes an angle α with segment $B A$ where point C is exterior to the first angle. If $\alpha+\beta=2 \measuredangle$ then C lies on the line $D B$.

Proof. Let E line on the line $D B$ and let γ be the angle between segments $B A$ and $B E$. Then by Euclid I.13, $\gamma+\beta=2 \measuredangle$. By hypothesis, $\alpha+\beta=2$ Ł, so $\gamma+\beta=\alpha+\beta$ (by Postulate 4) and hence $\gamma=\alpha$. So points E and C lie on the same line (i.e., lie on the same side of the common angle). Since E lies on line $D B$ then we have that C lies on line $D B$, as claimed.

Figure 2.6

Euclid, Book I Proposition 14

Euclid, Book I Proposition 14. Let line segment $D B$ and line segment $B A$ determine an angle β. If segment $B C$ makes an angle α with segment $B A$ where point C is exterior to the first angle. If $\alpha+\beta=2 \measuredangle$ then C lies on the line $D B$.

Proof. Let E line on the line $D B$ and let γ be the angle between segments $B A$ and $B E$. Then by Euclid I.13, $\gamma+\beta=2 \measuredangle$. By hypothesis, $\alpha+\beta=2$ Ł, so $\gamma+\beta=\alpha+\beta$ (by Postulate 4) and hence $\gamma=\alpha$. So points E and C lie on the same line (i.e., lie on the same side of the common angle). Since E lies on line $D B$ then we have that C lies on line $D B$, as claimed.

Figure 2.6

Euclid, Book I Proposition 15

Euclid, Book I Proposition 15. If two lines cut one another, they make the opposite angles equal to one another.

Proof. Consider the opposite angles α and β, and introduce angle γ as given in Figure 2.7. By Euclid I. 13 we have $\alpha+\gamma=2 \boldsymbol{\square}$ and $\gamma+\beta=2 \boldsymbol{L}$. So $\alpha+\gamma=\gamma+\beta$ (by Postulate 4). Therefore $\alpha=\beta$, as claimed.

Euclid, Book I Proposition 15

Euclid, Book I Proposition 15. If two lines cut one another, they make the opposite angles equal to one another.

Proof. Consider the opposite angles α and β, and introduce angle γ as given in Figure 2.7. By Euclid I. 13 we have $\alpha+\gamma=2$ দ and $\gamma+\beta=2 \measuredangle$. So $\alpha+\gamma=\gamma+\beta$ (by Postulate 4). Therefore $\alpha=\beta$, as claimed.

Figure 2.7

Euclid, Book I Proposition 15

Euclid, Book I Proposition 15. If two lines cut one another, they make the opposite angles equal to one another.

Proof. Consider the opposite angles α and β, and introduce angle γ as given in Figure 2.7. By Euclid I. 13 we have $\alpha+\gamma=2$ দ and $\gamma+\beta=2 \measuredangle$. So $\alpha+\gamma=\gamma+\beta$ (by Postulate 4). Therefore $\alpha=\beta$, as claimed.

Figure 2.7

Euclid, Book I Proposition 16

Euclid, Book I Proposition 16. If one side of a triangle is extended at C, the exterior angle is greater than both angles in the triangle opposite to C.

Proof. Let E be the midpoint of $A C$, which can
be found by Euclid I.10. By Postulate 1, line
segment $B E$ exists. By Postulate 2, line segment
$B E$ can be extended to a point F such that
$B E=E F$. The "grey" angles at point E of
Figure 2.8 are opposite angles and so by
Euclid I. 15 are equal. So by Euclid I. 4
(side-angle-side) the two grey triangles are equal.

Euclid, Book I Proposition 16

Euclid, Book I Proposition 16. If one side of a triangle is extended at C, the exterior angle is greater than both angles in the triangle opposite to C.

Proof. Let E be the midpoint of $A C$, which can be found by Euclid I.10. By Postulate 1, line segment $B E$ exists. By Postulate 2, line segment $B E$ can be extended to a point F such that $B E=E F$. The "grey" angles at point E of Figure 2.8 are opposite angles and so by Euclid I. 15 are equal. So by Euclid I. 4 (side-angle-side) the two grey triangles are equal. Therefore the grey angle at point C is α and is "obviously" smaller than δ (we could use Common Notion 5 here); that is, $\delta>\alpha$, as claimed.
Similarly, by bisecting side BC and introducing a triangle with a vertex at point C, we can use the other angle of size δ to show $\delta>\beta$, as claimed.

Euclid, Book I Proposition 16

Euclid, Book I Proposition 16. If one side of a triangle is extended at C, the exterior angle is greater than both angles in the triangle opposite to C.

Proof. Let E be the midpoint of $A C$, which can be found by Euclid I.10. By Postulate 1, line segment $B E$ exists. By Postulate 2, line segment $B E$ can be extended to a point F such that $B E=E F$. The "grey" angles at point E of Figure 2.8 are opposite angles and so by Euclid I. 15 are equal. So by Euclid I. 4 (side-angle-side) the two grey triangles are equal. Therefore the grey angle at point C is α and is "obviously" smaller than δ (we could use Common Notion 5 here); that is, $\delta>\alpha$, as claimed.
 Similarly, by bisecting side $B C$ and introducing a triangle with a vertex at point C, we can use the other angle of size δ to show $\delta>\beta$, as claimed.

Euclid, Book I Proposition 27

Euclid, Book I Proposition 27. If some line cuts two line a and b such that alternate interior angles α and β are equal, then lines a and b are parallel, denoted $a \| b$.

Proof. Let points E and F be the points of intersection of the cutting line with lines a and b (see Figure 2.10). ASSUME that lines a and b are not parallel; then they meet at some point G. Without loss of generality, suppose point G is on side of the cutting line in which angle β lies, as in Figure 2.10. Then EGF is a triangle with α as an exterior angle. So by Euclid I.16, $\alpha>\beta$. But this CONTRADICTS the assumption that $\alpha=\beta$. So the assumption that lines a and b are not parallel is false, and hence lines a and b are parallel, as claimed.

Euclid, Book I Proposition 27

Euclid, Book I Proposition 27. If some line cuts two line a and b such that alternate interior angles α and β are equal, then lines a and b are parallel, denoted $a \| b$.

Proof. Let points E and F be the points of intersection of the cutting line with lines a and b (see Figure 2.10). ASSUME that lines a and b are not parallel; then they meet at some point G. Without loss of generality, suppose point G is on side of the cutting line in which angle β lies, as in Figure 2.10. Then EGF is a triangle with α as an exterior angle. So by Euclid I.16, $\alpha>\beta$. But this CONTRADICTS the assumption that $\alpha=\beta$. So the assumption that lines a and b are not parallel is false, and hence lines a and b are parallel, as claimed.

Euclid, Book I Proposition 27

Euclid, Book I Proposition 27. If some line cuts two line a and b such that alternate interior angles α and β are equal, then lines a and b are parallel, denoted $a \| b$.

Proof. Let points E and F be the points of intersection of the cutting line with lines a and b (see Figure 2.10). ASSUME that lines a and b are not parallel; then they meet at some point G. Without loss of generality, suppose point G is on side of the cutting line in which angle β lies, as in Figure 2.10. Then EGF is a triangle with α as an exterior angle. So by Euclid I.16, $\alpha>\beta$. But this CONTRADICTS the assumption that $\alpha=\beta$. So the assumption that lines a and b are not parallel is false, and hence lines a and b are parallel, as claimed.

Euclid, Book I Proposition 29

Euclid, Book I Proposition 29. Parallel lines cut by some line, have alternate interior angles are equal.

Proof. Let a and b be parallel lines and let α and β be alternate interior angles that result from the cutting line (see Figure 2.11). ASSUME $\alpha>\beta$. Introduce angle γ as in Figure 2.11. By Euclid I. 13 we have $\alpha+\gamma=2$ ㄴ, and hence $\beta+\gamma<2 \boldsymbol{\square}$. By the Parallel Postulate (Postulate 5), lines a and b meet (and do so on the side of the cutting line containing angles β and γ), CONTRADICTING the hypothesis that $a \| b$. So the assumption that $\alpha>\beta$ is false and hence we have $\alpha \leq \beta$. Similarly, if we assume $\alpha<\beta$ we can show that $\alpha \geq \beta$. Hence $\alpha=\beta$, as claimed.

Euclid, Book I Proposition 29

Euclid, Book I Proposition 29. Parallel lines cut by some line, have alternate interior angles are equal.

Proof. Let a and b be parallel lines and let α and β be alternate interior angles that result from the cutting line (see Figure 2.11). ASSUME $\alpha>\beta$. Introduce angle γ as in Figure 2.11. By Euclid I. 13 we have $\alpha+\gamma=2$ 亿, and hence $\beta+\gamma<2 \measuredangle$. By the Parallel Postulate (Postulate 5), lines a and b meet (and do so on the side of the cutting line containing angles β and γ), CONTRADICTING the hypothesis that $a \| b$. So the assumption that $\alpha>\beta$ is false and hence we have $\alpha \leq \beta$. Similarly, if we assume $\alpha<\beta$ we can show that $\alpha \geq \beta$. Hence $\alpha=\beta$, as claimed.

Figure 2.11

Euclid, Book I Proposition 29

Euclid, Book I Proposition 29. Parallel lines cut by some line, have alternate interior angles are equal.

Proof. Let a and b be parallel lines and let α and β be alternate interior angles that result from the cutting line (see Figure 2.11). ASSUME $\alpha>\beta$. Introduce angle γ as in Figure 2.11. By Euclid I. 13 we have $\alpha+\gamma=2$ 亿, and hence $\beta+\gamma<2 \measuredangle$. By the Parallel Postulate (Postulate 5), lines a and b meet (and do so on the side of the cutting line containing angles β and γ), CONTRADICTING the hypothesis that $a \| b$. So the assumption that $\alpha>\beta$ is false and hence we have $\alpha \leq \beta$. Similarly, if we assume $\alpha<\beta$ we can show that $\alpha \geq \beta$. Hence $\alpha=\beta$, as claimed.

Figure 2.11

Euclid, Book I Proposition 30

Euclid, Book I Proposition 30. For any three (distinct) lines a, b, c, if $a \| b$ and $b \| a$ then $a \| c$.

Proof. Let the angles between the parallel lines a, b, c and the cutting line be α, β, γ, respectively (see Figure 2.12). If we introduce the angles opposite α, β, γ as $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ (not pictured in Figure 2.12) then by Euclid I. 15 we have $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $\gamma=\gamma^{\prime}$. By Euclid I.29, $\alpha=\beta^{\prime}$ since a $\| b$, and $\beta=\gamma^{\prime}$ since $b \| c$. Hence, $\alpha=\beta^{\prime}=\beta=\gamma^{\prime}$. Finally, by Euclid I.27, we have a ||c, as claimed.

Euclid, Book I Proposition 30

Euclid, Book I Proposition 30. For any three (distinct) lines a, b, c, if $a \| b$ and $b \| a$ then $a \| c$.

Proof. Let the angles between the parallel lines a, b, c and the cutting line be α, β, γ, respectively (see Figure 2.12). If we introduce the angles opposite α, β, γ as $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ (not pictured in Figure 2.12) then by Euclid I. 15 we have $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $\gamma=\gamma^{\prime}$. By Euclid I.29, $\alpha=\beta^{\prime}$ since a $\| b$, and $\beta=\gamma^{\prime}$ since $b \| c$. Hence, $\alpha=\beta^{\prime}=\beta=\gamma^{\prime}$. Finally, by Euclid I.27, we have $a \| c$, as claimed.

Euclid, Book I Proposition 30

Euclid, Book I Proposition 30. For any three (distinct) lines a, b, c, if $a \| b$ and $b \| a$ then $a \| c$.

Proof. Let the angles between the parallel lines a, b, c and the cutting line be α, β, γ, respectively (see Figure 2.12). If we introduce the angles opposite α, β, γ as $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ (not pictured in Figure 2.12) then by Euclid I. 15 we have $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $\gamma=\gamma^{\prime}$. By Euclid I.29, $\alpha=\beta^{\prime}$ since a $\| b$, and $\beta=\gamma^{\prime}$ since $b \| c$. Hence, $\alpha=\beta^{\prime}=\beta=\gamma^{\prime}$. Finally, by Euclid I.27, we have $a \| c$, as claimed.

Euclid, Book I Proposition 31

Euclid, Book I Proposition 31. To draw a parallel to a given line a through a given point A not on the a.

Proof. By Euclid I.12, we can construct a perpendicular to line a through point A. By Euclid I.11, we can construct a perpendicular b to the perpendicular through point A. We then have that the alternate interior angles for lines a and b are both right angles and hence by Euclid I. 27 line b is parallel to line a and passes through point A, as needed.

Euclid, Book I Proposition 31

Euclid, Book I Proposition 31. To draw a parallel to a given line a through a given point A not on the a.

Proof. By Euclid I.12, we can construct a perpendicular to line a through point A. By Euclid I.11, we can construct a perpendicular b to the perpendicular through point A. We then have that the alternate interior angles for lines a and b are both right angles and hence by Euclid I. 27 line b is parallel to line a and passes through point A, as needed.

Euclid, Book I Proposition 31

Euclid, Book I Proposition 31. To draw a parallel to a given line a through a given point A not on the a.

Proof. By Euclid I.12, we can construct a perpendicular to line a through point A. By Euclid I.11, we can construct a perpendicular b to the perpendicular through point A. We then have that the alternate interior angles for lines a and b are both right angles and hence by Euclid I. 27 line b is parallel to line a and passes through point A, as needed.

Figure 2.13

