History of Geometry

Chapter 2. The Elements of Euclid

2.2. Book III. Properties of Circles and Angles-Proofs of Theorems


```
Alexander Ostermann
Gerhard Wanner
```


Geometry by lts History

Table of contents

(1) Euclid, Book III Proposition 22
(2) Euclid, Book III Proposition 35
(3) Euclid, Book III Proposition 36
(4) Corollary (Clavius 1574)

Euclid, Book III Proposition 22

Euclid, Book III Proposition 22. Let $A B C D$ be a quadrilateral inscribed in a circle. Then the sum of two opposite angles equals two right angles: $\alpha+\delta=2$ দ.

Proof. Consider the triangle ABC in Figure 2.15(b). By Euclid III.21, we have the angle β at point D as given (think of sliding point B around to point D, and we have angle γ at point D as given (thin of sliding point C around to point D). So we have $\delta=\beta+\gamma$. Euclid I. 32 states that the sum of the angles of a triangle is equal to two right angles, so in triangle $A B C$ we have $\alpha+\beta+\gamma=2 \boldsymbol{L}$. Hence, $\alpha+\delta=2 \boldsymbol{\square}$, as claimed.

Euclid, Book III Proposition 22

Euclid, Book III Proposition 22. Let $A B C D$ be a quadrilateral inscribed in a circle. Then the sum of two opposite angles equals two right angles: $\alpha+\delta=2$ দ.

Proof. Consider the triangle $A B C$ in Figure 2.15(b). By Euclid III.21, we have the angle β at point D as given (think of sliding point B around to point D, and we have angle γ at point D as given (thin of sliding point C around to point D). So we have $\delta=\beta+\gamma$. Euclid I. 32 states that the sum of the angles of a triangle is equal to two right angles, so in triangle $A B C$ we have $\alpha+\beta+\gamma=2 \measuredangle$. Hence, $\alpha+\delta=2$ ㄴ, as claimed.

Euclid, Book III Proposition 22

Euclid, Book III Proposition 22. Let $A B C D$ be a quadrilateral inscribed in a circle. Then the sum of two opposite angles equals two right angles: $\alpha+\delta=2$ দ.

Proof. Consider the triangle $A B C$ in Figure 2.15(b). By Euclid III.21, we have the angle β at point D as given (think of sliding point B around to point D, and we have angle γ at point D as given (thin of sliding point C around to point D). So we have $\delta=\beta+\gamma$. Euclid I. 32 states that the sum of the angles of a triangle is equal to two right angles, so in triangle $A B C$ we have $\alpha+\beta+\gamma=2 \measuredangle$. Hence, $\alpha+\delta=2$ ㄴ, as claimed.

Figure 2.15(b)

Euclid, Book III Proposition 35

Euclid, Book III Proposition 35. If two chords $A B$ and $C D$ of a circle intersect in a point E inside the circle, then $A E \cdot E B=C E \cdot E D$.

Proof. Euclid's (lengthy) proof avoids the use of Thales' Theorem
(Theorem 1.1). Instead, we claim that triangles $A E C$ and $D E B$ are similar, and then use Thale's Theorem. The opposite angles labeled ε in Figure 2.16(b) are equal by Euclid I.15. The angles at points A and D are equal (labeled α in Figure 2.16(b)) by Euclid III. 21 (consider them as angles in triangles $C A B$
and $C D B$ with common base $C B$) and, similarly, the angles at points C and B are equal. So the $A E C$ and $D E B$ are similar, as claimed, and by Thale's Theorem $A E / C E=E D / E B$,
or $A E \cdot E B=C E \cdot E D$, as claimed

Euclid, Book III Proposition 35

Euclid, Book III Proposition 35. If two chords $A B$ and $C D$ of a circle intersect in a point E inside the circle, then $A E \cdot E B=C E \cdot E D$.

Proof. Euclid's (lengthy) proof avoids the use of Thales' Theorem (Theorem 1.1). Instead, we claim that triangles $A E C$ and $D E B$ are similar, and then use Thale's Theorem. The opposite angles labeled ε in Figure 2.16(b) are equal by Euclid I.15. The angles at points A and D are equal (labeled α in Figure 2.16(b)) by Euclid III. 21 (consider them as angles in triangles $C A B$ and $C D B$ with common base $C B$) and, similarly, the angles at points C and B are equal. So the $A E C$ and $D E B$ are similar, as claimed, and by Thale's Theorem $A E / C E=E D / E B$, or $A E \cdot E B=C E \cdot E D$, as claimed

Figure 2.16(b)

Euclid, Book III Proposition 35

Euclid, Book III Proposition 35. If two chords $A B$ and $C D$ of a circle intersect in a point E inside the circle, then $A E \cdot E B=C E \cdot E D$.

Proof. Euclid's (lengthy) proof avoids the use of Thales' Theorem (Theorem 1.1). Instead, we claim that triangles $A E C$ and $D E B$ are similar, and then use Thale's Theorem. The opposite angles labeled ε in Figure 2.16(b) are equal by Euclid I.15. The angles at points A and D are equal (labeled α in Figure 2.16(b)) by Euclid III. 21 (consider them as angles in triangles $C A B$ and $C D B$ with common base $C B$) and, similarly, the angles at points C and B are equal. So the $A E C$ and $D E B$ are similar, as claimed, and by Thale's Theorem $A E / C E=E D / E B$, or $A E \cdot E B=C E \cdot E D$, as claimed

Figure 2.16(b)

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B. Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof. The two angles labeled α in Figure 2.17(a)
are equal by Euclid III. 21 and Exercise 2.17. In
triangle $A T E$ the angle at A corresponds to the angle at T in triangle $T B E$, and both of these angles are α. In triangle ATE the angle at E corresponds to the angle at E in triangle TBE and this common angle is ε.

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B. Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof. The two angles labeled α in Figure 2.17(a) are equal by Euclid III. 21 and Exercise 2.17. In triangle $A T E$ the angle at A corresponds to the angle at T in triangle $T B E$, and both of these angles are α. In triangle ATE the angle at E corresponds to the angle at E in triangle TBE and this common angle is ε.

Figure 2.17(a)

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B. Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof. The two angles labeled α in Figure 2.17(a) are equal by Euclid III. 21 and Exercise 2.17. In triangle $A T E$ the angle at A corresponds to the angle at T in triangle $T B E$, and both of these angles are α. In triangle ATE the angle at E corresponds to the angle at E in triangle TBE and this common angle is ε.

Figure 2.17(a)

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B. Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof (continued). The angle sum of a triangle is
2 by Euclid I. 32 then, since in triangle ATE the
angle at T corresponds to the angle at B in triangle TBE,
and both of these angles must be equal. That is,
triangles ATE and TBE are similar. So by Thales'
Theorem (Theorem 1.1), $A E / T E=T E / B E$
or $A E \cdot B E=(T E)^{2}$, as claimed. \square

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B.
Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof (continued). The angle sum of a triangle is 2 L by Euclid 1.32 then, since in triangle ATE the angle at T corresponds to the angle at B in triangle and both of these angles must be equal. That is, triangles ATE and TBE are similar. So by Thales' Theorem (Theorem 1.1), $A E / T E=T E / B E$ or $A E \cdot B E=(T E)^{2}$, as claimed. \square

Figure 2.17(a)

Euclid, Book III Proposition 36

Euclid, Book III Proposition 36. Let E be a point outside a circle and consider a line through E that cuts the circle in two points A and B.
Further let T be the point of tangency of a tangent through E (see Figure 2.17(a)). Then $A E \cdot B E=(T E)^{2}$.

Proof (continued). The angle sum of a triangle is 2 L by Euclid 1.32 then, since in triangle ATE the angle at T corresponds to the angle at B in triangle and both of these angles must be equal. That is, triangles ATE and TBE are similar. So by Thales' Theorem (Theorem 1.1), $A E / T E=T E / B E$ or $A E \cdot B E=(T E)^{2}$, as claimed. \square

Figure 2.17(a)

Corollary (Clavius 1574)

Corollary (Clavius 1574). Let A, B, C, and D denote four points on a circle. If the line $A B$ meets the line $C D$ in a point E outside the circle (see Figure 2.17(b)), then $A E \cdot B E=C E \cdot D E$.

Figure 2.17(b)

Proof. By Euclid III.36, $A E \cdot B E=(T E)^{2}$ where T is the point of tangency of a tangent through E. Similarly, Euclid III. 36 implies that $C E \cdot D E=(T E)^{2}$. Therefore, $A E \cdot B E=D E \cdot D E$, as claimed.

Corollary (Clavius 1574)

Corollary (Clavius 1574). Let A, B, C, and D denote four points on a circle. If the line $A B$ meets the line $C D$ in a point E outside the circle (see Figure 2.17(b)), then $A E \cdot B E=C E \cdot D E$.

Figure 2.17(b)

Proof. By Euclid III.36, $A E \cdot B E=(T E)^{2}$ where T is the point of tangency of a tangent through E. Similarly, Euclid III. 36 implies that $C E \cdot D E=(T E)^{2}$. Therefore, $A E \cdot B E=D E \cdot D E$, as claimed.

