History of Geometry

Chapter 2. The Elements of Euclid

2.3. Books V and VI. Real Numbers and Thales' Theorem—Proofs of Theorems

```
UN\mp@code{Ugrafoate IertuinN}
Alexander Ostermann
Gerhard Wanner
```


Geometry by Its History

Table of contents

(1) Euclid, Book VI Proposition 2
(2) Euclid, Book VI Proposition 3

Euclid, Book VI Proposition 2

Euclid, Book VI Proposition 2. Consider triangle $A D E$. Suppose B is a point on segment $A D$ and C is a point on segment $A E$ such that $B C$ is parallel to $D E$. Then $a / c=b / d$ (where a, b, c, d are the distances given in the figure).

Proof. We start by joining points B and E, and points C and D. This gives two triangles, $C B E$ and $C B D$, with the same base, $C B$, and the same altitude (the distance from line $C B$ to point E and to point D, but these are the same since lines $C B$ and $E D$ are parallel by hypothesis). Hence the two triangles have the same area, say $F_{a}=F_{b}$ (see the middle figure in which the altitudes are drawn, though they are not parts of the triangles)

Euclid, Book VI Proposition 2

Euclid, Book VI Proposition 2. Consider triangle $A D E$. Suppose B is a point on segment $A D$ and C is a point on segment $A E$ such that $B C$ is parallel to $D E$. Then $a / c=b / d$ (where a, b, c, d are the distances given in the figure).

Proof. We start by joining points B and E, and points C and D. This gives two triangles, $C B E$ and $C B D$, with the same base, $C B$, and the same altitude (the distance from line $C B$ to point E and to point D, but these are the same since lines $C B$ and $E D$ are parallel by hypothesis). Hence the two triangles have the same area, say $F_{a}=F_{b}$ (see the middle figure in which the altitudes are drawn, though they are not parts of the triangles).

Euclid, Book VI Proposition 2 (continued)

Proof (continued).

Thus if F_{0} denotes the area of triangle $A B C$, then

$$
F_{a}=F_{b} \text { implies } \frac{F_{a}}{F_{0}}=\frac{F_{b}}{F_{0}} \Longrightarrow \frac{a}{c}=\frac{b}{d}
$$

since $F_{a} / F_{0}=a / c$ by Euclid VI. 1 (here we are using the "altitude on $A D$ " as opposed to the altitude perpendicular to the base $C B$ [in the figure, right]; we claim that the ratios of the altitudes are the same), and similarly $F_{b} / F_{0}=b / d$.

Euclid, Book VI Proposition 3

Euclid, Book VI Proposition 3. Consider triangle $A B C$ with angle γ at point C. Let $C D$ be the bisector of γ. Then $a / b=p / q$ (where a, b, p, q are the distances given in the figure).

Proof. Let F_{a} and F_{b} be the areas of triangle $D B C$ and $A D C$, respectively. These have the same "altitude on $A B$ " (see the middle figure). Hence $F_{a} / F_{b}=p / q$ by Euclid VI.1.

Euclid, Book VI Proposition 3

Euclid, Book VI Proposition 3. Consider triangle $A B C$ with angle γ at point C. Let $C D$ be the bisector of γ. Then $a / b=p / q$ (where a, b, p, q are the distances given in the figure).

Proof. Let F_{a} and F_{b} be the areas of triangle $D B C$ and $A D C$, respectively. These have the same "altitude on $A B$ " (see the middle figure). Hence $F_{a} / F_{b}=p / q$ by Euclid VI.1. Euclid I. 26 implies that any point on the bisector of angle γ is equidistant from the sides of the angle (as illustrated in the figure, right, for point D). So the altitude of triangle $A D C$ on $A C$ equals the altitude of triangle $D B C$ on $B C$, and by Euclid VI. 1 we have $F_{a} / F_{b}=a / b$. Hence, $a / b=p / q$, as claimed.

Euclid, Book VI Proposition 3

Euclid, Book VI Proposition 3. Consider triangle $A B C$ with angle γ at point C. Let $C D$ be the bisector of γ. Then $a / b=p / q$ (where a, b, p, q are the distances given in the figure).

Proof. Let F_{a} and F_{b} be the areas of triangle $D B C$ and $A D C$, respectively. These have the same "altitude on $A B$ " (see the middle figure). Hence $F_{a} / F_{b}=p / q$ by Euclid VI.1. Euclid I. 26 implies that any point on the bisector of angle γ is equidistant from the sides of the angle (as illustrated in the figure, right, for point D). So the altitude of triangle $A D C$ on $A C$ equals the altitude of triangle $D B C$ on $B C$, and by Euclid VI. 1 we have $F_{a} / F_{b}=a / b$. Hence, $a / b=p / q$, as claimed.

