History of Geometry #### Chapter 2. The Elements of Euclid 2.6. Book XII. Areas and Volumes of Circles, Pyramids, Cones—Proofs of Theorems #### Table of contents Euclid, Book XII Proposition 2 **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof.** Recall that Euclid VI.19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has a^2 times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof.** Recall that Euclid VI.19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^2 times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $A_1/A_2 > g^2$; that is, $g^2 A_2 < A_1$. Then inscribe in circle C_2 a regular polygon P whose area is greater than g^2A_1 (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $q^2 \mathcal{A}_1 < \mathcal{P} < \mathcal{A}_2$. (*) > History of Geometry January 28, 2022 **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof.** Recall that Euclid VI.19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^2 times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $\mathcal{A}_1/\mathcal{A}_2 > q^2$; that is, $q^2\mathcal{A}_2 < \mathcal{A}_1$. Then inscribe in circle C_2 a regular polygon P whose area is greater than $q^2\mathcal{A}_1$ (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $q^2\mathcal{A}_1 < \mathcal{P} < \mathcal{A}_2$. (*) Figure 2.33 **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof.** Recall that Euclid VI.19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^2 times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $\mathcal{A}_1/\mathcal{A}_2 > q^2$; that is, $q^2\mathcal{A}_2 < \mathcal{A}_1$. Then inscribe in circle C_2 a regular polygon P whose area is greater than $q^2\mathcal{A}_1$ (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $q^2\mathcal{A}_1 < \mathcal{P} < \mathcal{A}_2$. (*) Figure 2.33 # Euclid, Book XII Proposition 2 (continued) **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof (continued).** Next, divide the polygon P by q (that is, "shrink" its sides by a factor of q) to produce a new polygon A similar to P. By Euclid VI.9 the area of Q is \mathcal{P}/q^2 , and since the radius of circle C_2 divided by q is the radius of C_1 then polygon Q can be inscribed in circle C_1 . Then Euclid X.1 (again) gives $\mathcal{P}/q^2 < \mathcal{A}_1$, which implies $\mathcal{P} < q^2 \mathcal{A}_1$, a CONTRADICTION to the above inequality. So the assumption is false, and we must have $\mathcal{A}_1/\mathcal{A}_2 \leq q^2$. Similarly, by interchanging the roles of C_1 and C_2 (and replacing the scaling factor with 1/q) we can show that $\mathcal{A}_1/\mathcal{A}_2 < q^2$ is false and that $\mathcal{A}_1/\mathcal{A}_2 \geq q^2$. Therefore, $\mathcal{A}_1/\mathcal{A}_2 = q^2$, as claimed. # Euclid, Book XII Proposition 2 (continued) **Euclid, Book XII Proposition 2.** The areas A_1 and A_2 of two circles C_1 and C_2 of radii r_1 and r_2 , respectively, satisfy: $r_2/r_1 = q \Rightarrow A_1/A_2 = q^2$. **Proof (continued).** Next, divide the polygon P by q (that is, "shrink" its sides by a factor of q) to produce a new polygon A similar to P. By Euclid VI.9 the area of Q is \mathcal{P}/q^2 , and since the radius of circle C_2 divided by q is the radius of C_1 then polygon Q can be inscribed in circle C_1 . Then Euclid X.1 (again) gives $\mathcal{P}/q^2 < \mathcal{A}_1$, which implies $\mathcal{P} < q^2 \mathcal{A}_1$, a CONTRADICTION to the above inequality. So the assumption is false, and we must have $\mathcal{A}_1/\mathcal{A}_2 \leq q^2$. Similarly, by interchanging the roles of C_1 and C_2 (and replacing the scaling factor with 1/q) we can show that $\mathcal{A}_1/\mathcal{A}_2 < q^2$ is false and that $\mathcal{A}_1/\mathcal{A}_2 \geq q^2$. Therefore, $\mathcal{A}_1/\mathcal{A}_2 = q^2$, as claimed.