History of Geometry

Chapter 2. The Elements of Euclid

2.6. Book XII. Areas and Volumes of Circles, Pyramids, Cones-Proofs of Theorems


```
Alexander Ostermann
Gerhard Wanner
```


Geometry by lts History

Table of contents

(1) Euclid, Book XII Proposition 2

Euclid, Book XII Proposition 2

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof. Recall that Euclid VI. 19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^{2} times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality.

Euclid, Book XII Proposition 2

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof. Recall that Euclid VI. 19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^{2} times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $\mathcal{A}_{1} / \mathcal{A}_{2}>q^{2}$; that is,
$q^{2} \mathcal{A}_{2}<\mathcal{A}_{1}$. Then inscribe in circle C_{2} a regular polygon P whose area is greater than $q^{2} \mathcal{A}_{1}$ (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $\quad q^{2} \mathcal{A}_{1}<\mathcal{P}<\mathcal{A}_{2}$.

Euclid, Book XII Proposition 2

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof. Recall that Euclid VI. 19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^{2} times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $\mathcal{A}_{1} / \mathcal{A}_{2}>q^{2}$; that is, $q^{2} \mathcal{A}_{2}<\mathcal{A}_{1}$. Then inscribe in circle C_{2} a regular polygon P whose area is greater than $q^{2} \mathcal{A}_{1}$ (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $\quad q^{2} \mathcal{A}_{1}<\mathcal{P}<\mathcal{A}_{2}$.

Figure 2.33

Euclid, Book XII Proposition 2

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof. Recall that Euclid VI. 19 (Theorem 1.6 in Ostermann and Wanner) states: A similar triangle with q times longer sides has q^{2} times larger area. We use the method of exhaustion (somewhat informally) to establish the claimed equality. First, ASSUME that $\mathcal{A}_{1} / \mathcal{A}_{2}>q^{2}$; that is, $q^{2} \mathcal{A}_{2}<\mathcal{A}_{1}$. Then inscribe in circle C_{2} a regular polygon P whose area is greater than $q^{2} \mathcal{A}_{1}$ (this is the informal step; see Figure 2.33). By Euclid X.1, with \mathcal{P} as the area of polygon P, we have: $\quad q^{2} \mathcal{A}_{1}<\mathcal{P}<\mathcal{A}_{2}$.

Figure 2.33

Euclid, Book XII Proposition 2 (continued)

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof (continued). Next, divide the polygon P by q (that is, "shrink" its sides by a factor of q) to produce a new polygon A similar to P. By Euclid VI. 9 the area of Q is \mathcal{P} / q^{2}, and since the radius of circle C_{2} divided by q is the radius of C_{1} then polygon Q can be inscribed in circle C_{1}. Then Euclid X. 1 (again) gives $\mathcal{P} / q^{2}<\mathcal{A}_{1}$, which implies $\mathcal{P}<q^{2} \mathcal{A}_{1}$, a CONTRADICTION to the above inequality. So the assumption is false, and we must have $\mathcal{A}_{1} / \mathcal{A}_{2} \leq q^{2}$. Similarly, by interchanging the roles of C_{1} and C_{2} (and replacing the scaling factor with $1 / q$) we can show that $\mathcal{A}_{1} / \mathcal{A}_{2}<q^{2}$ is false and that $\mathcal{A}_{1} / \mathcal{A}_{2} \geq q^{2}$. Therefore, $\mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$, as claimed.

Euclid, Book XII Proposition 2 (continued)

Euclid, Book XII Proposition 2. The areas \mathcal{A}_{1} and \mathcal{A}_{2} of two circles C_{1} and C_{2} of radii r_{1} and r_{2}, respectively, satisfy: $r_{2} / r_{1}=q \Rightarrow \mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$.

Proof (continued). Next, divide the polygon P by q (that is, "shrink" its sides by a factor of q) to produce a new polygon A similar to P. By Euclid VI. 9 the area of Q is \mathcal{P} / q^{2}, and since the radius of circle C_{2} divided by q is the radius of C_{1} then polygon Q can be inscribed in circle C_{1}. Then Euclid X. 1 (again) gives $\mathcal{P} / q^{2}<\mathcal{A}_{1}$, which implies $\mathcal{P}<q^{2} \mathcal{A}_{1}$, a CONTRADICTION to the above inequality. So the assumption is false, and we must have $\mathcal{A}_{1} / \mathcal{A}_{2} \leq q^{2}$. Similarly, by interchanging the roles of C_{1} and C_{2} (and replacing the scaling factor with $1 / q$) we can show that $\mathcal{A}_{1} / \mathcal{A}_{2}<q^{2}$ is false and that $\mathcal{A}_{1} / \mathcal{A}_{2} \geq q^{2}$. Therefore, $\mathcal{A}_{1} / \mathcal{A}_{2}=q^{2}$, as claimed.

