History of Geometry

Chapter 3. Conic Sections
3.2. The Ellipse-Proofs of Theorems

Undeigradiate Trxtsin 1 Pexinesin Mathomatice
 Alexander Ostermann
 Gerhard Wanner

Geometry by Its History

Table of contents

(1) Theorem 3.2.A (Apollonius' Proposition III.52)

Theorem 3.2.A (Apollonius' Proposition III.52)

Theorem 3.2.A. (Apollonius' Proposition III.52)
The intersection of a cone and a plane that is less steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant sum. Proof. Let π be a plane intersecting a cone and let π be less steep than the generators of the cone. Let P be an arbitrary point on the intersection of plane π and the cone. Next, introduce a Dandelin sphere in the cone which touches the cone in a circle C and is tangent to plane π at point F, as shown in Figure 3.3 (left).

Theorem 3.2.A (Apollonius' Proposition III.52)

Theorem 3.2.A. (Apollonius' Proposition III.52)
The intersection of a cone and a plane that is less steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant sum. Proof. Let π be a plane intersecting a cone and let π be less steep than the generators of the cone. Let P be an arbitrary point on the intersection of plane π and the cone. Next, introduce a Dandelin sphere in the cone which touches the cone in a circle C and is tangent to plane π at point F, as shown in Figure 3.3 (left).

Fig. 3.3. An ellipse as the intersection of a cone with a plane

Theorem 3.2.A (Apollonius' Proposition III.52)

Theorem 3.2.A. (Apollonius' Proposition III.52)
The intersection of a cone and a plane that is less steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant sum. Proof. Let π be a plane intersecting a cone and let π be less steep than the generators of the cone. Let P be an arbitrary point on the intersection of plane π and the cone. Next, introduce a Dandelin sphere in the cone which touches the cone in a circle C and is tangent to plane π at point F, as shown in Figure 3.3 (left).

Fig. 3.3. An ellipse as the intersection of a cone with a plane

Theorem 3.2.A (Apollonius' Proposition III.52); Cont. 1

Proof (continued). Now the plane containing circle C intersects plane π in a line. Let B be the point on this line that is above point P (see Figure 3.3, right). Since π is less steep than the generator $\overleftrightarrow{A P}$ of the cone, then $P B$ is longer than $P A$ (compare the slopes of these line segments in the plane containing points P, A, and B). Define the factor by which $P B$ is longer than $P A$ as $1 / e$ where $0<e<1$.

Fig. 3.3. An ellipse as the intersection of a cone with a plane

Theorem 3.2.A (Apollonius' Proposition III.52); Cont. 2

Proof (continued). Since parameter $1 / e$ is determined by the slope of a generator of the cone and the slope of plane π (more appropriately, $1 / e$ is determined by the slopes of the cross sections of the cone and π in the plane containing points P, A, and B), then $1 / e$ is independent of point P. Notice that both $P F$ and $P A$ are tangent to the Dandelin sphere, so they have the same lengths (as argued at the beginning of the proof of Theorem 3.1).

Fig. 3.3. An ellipse as the intersection of a cone with a plane

Theorem 3.2.A (Apollonius' Proposition III.52); Cont. 3

Proof (continued). Next, place a second (larger) Dandelin sphere below plane π that intersects the cone in a circle C^{\prime} and is tangent to π at a point F^{\prime} (see Figure 3.3, left). Extend $A P$ so that it intersects circle C^{\prime} at P^{\prime}. Again, $P F^{\prime}$ and $P A^{\prime}$ are the same length. Similar to the argument above, we have that $P B^{\prime}$ is longer than $P A^{\prime}$ by the factor $1 / e$ (where B^{\prime} is the point of intersection of $\overleftrightarrow{B P}$ with the plane containing C^{\prime}; point B^{\prime} is not in Figure 3.3).

Fig. 3.3. An ellipse as the intersection of a cone with a plane

Theorem 3.2.A (Apollonius' Proposition III.52); Cont. 4

Proof (continued). Since circles C and C^{\prime} lie in paralel planes, then the sum of the length of $P A$ (denoted ℓ in Figure 3.3) and the length of $P A^{\prime}$ (denoted ℓ^{\prime}) is constant (namely $\ell+\ell^{\prime}$). Since the length of $P F$ is ℓ and the length of $P F^{\prime}$ is ℓ, then for each point P on the ellipse the sum of the distance of P from F and F^{\prime} is constant, as claimed.

Fig. 3.3. An ellipse as the intersection of a cone with a plane

