History of Geometry

Chapter 3. Conic Sections

3.3. The Hyperbola-Proofs of Theorems

Table of contents

(1) Theorem 3.3.A (Apollonius' Proposition III.51)

Theorem 3.3.A (Apollonius' Proposition III.51)

Theorem 3.3.A. (Apollonius' Proposition III.51))
The intersection of a double cone and a plane that is more steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant difference.

Proof. Let π be a plane intersecting
a double cone and let π be more
steep than the generators of the
double cone. Let P be an arbitrary
point on the intersection of plane π
and the lower cone (a similar
argument holds when P is on the
upper cone).

Theorem 3.3.A (Apollonius' Proposition III.51)

Theorem 3.3.A. (Apollonius' Proposition III.51))
The intersection of a double cone and a plane that is more steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant difference.

Proof. Let π be a plane intersecting a double cone and let π be more steep than the generators of the double cone. Let P be an arbitrary point on the intersection of plane π and the lower cone (a similar argument holds when P is on the upper cone).

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

Theorem 3.3.A (Apollonius' Proposition III.51)

Theorem 3.3.A. (Apollonius' Proposition III.51))
The intersection of a double cone and a plane that is more steep than the generators of the cone is a locus of all points in a plane whose distances from two fixed points in the plane (called foci) have a constant difference.

Proof. Let π be a plane intersecting a double cone and let π be more steep than the generators of the double cone. Let P be an arbitrary point on the intersection of plane π and the lower cone (a similar argument holds when P is on the upper cone).

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

Theorem 3.3.A (Apollonius' Proposition III.51); Cont. 1

Proof (continued). Next, introduce two Dandelin spheres, one in the lower cone tangent to π and one in the upper cone tangent of π, and let F and F^{\prime} be the points of tangency of the upper and lower Dandelin cones with plane π, respectively. Let circle C be the intersection of the lower cone and π and circle C^{\prime} be the intersection of the lower cone and π and circle C^{\prime} be the intersection of the upper cone and π. See Figure 3.10 (left).

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

Theorem 3.3.A (Apollonius' Proposition III.51); Cont. 2

Proof (continued). Now the plane containing circle C intersects plane π in a line. Let B be the point on this line that is above point P (see Figure 3.10 , right). Since π is less steep than the generator $\overleftrightarrow{A P}$ of the cone, then $P B$ is longer than $P A$ (compare the slopes of these line segments in the plane containing points P, A, and B). Define the factor by which $P B$ is longer than $P A$ as $1 / e$ where $e>1$.

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

Theorem 3.3.A (Apollonius' Proposition III.51); Cont. 3

Proof (continued). Since parameter $1 / e$ is determined by the slope of a generator of the cone and the slope of plane π (more appropriately, $1 / e$ is determined by the slopes of the cross sections of the cone and π in the plane containing points P, A, and B), then $1 / e$ is independent of point P. Notice that both $P F$ and $P A$ are tangent to the Dandelin sphere, so they have the same lengths (as argued at the beginning of the proof of Theorem 3.1).

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

Theorem 3.3.A (Apollonius' Proposition III.51); Cont. 4

Proof (continued). Extend $A P$ through the vertex of the double cone and then to the second cone and circle C^{\prime} at point A^{\prime}. Again, $P F^{\prime}$ and $P A^{\prime}$ are the same length. Next, the plane containing circle C^{\prime} intersects plane π is a line. Let B^{\prime} be the point on this line that is above P (s that $P B$ and $P B^{\prime}$ are collinear; point B^{\prime} is not in Figure 3.10). Just as $P B$ is shorter than $P A$ above, $P B^{\prime}$ is shorter than $P A^{\prime}$ by a factor of $1 / e$ and parameter q / e is independent of P.

Theorem 3.3.A (Apollonius' Proposition III.51); Cont. 5

Proof (continued). With ℓ as the length of of $P F$ (and $P A$) then $P B$ is length ℓ / e. With ℓ^{\prime} as the length of $P F^{\prime}$ (and $P A^{\prime}$) then $P B^{\prime}$ is length ℓ^{\prime} / e. For any point P on the lower branch of the hyperbola, we have that the length of $P F^{\prime}$ minus the length of $P F$ is $\ell^{\prime}=\ell$. Also, for any point on the lower branch, $\ell^{\prime} / e-\ell / e$ is the same (since $P B$ and $P B^{\prime}$ are collinear).
Therefore, $\ell^{\prime}-\ell$ is the same for all points P on the lower branch of the hyperbola. That is the distances of P from two fixed points in the plane have a constant difference, as claimed. \qquad

Fig. 3.10. A hyperbola as the intersection of a cone with a plane

