History of Geometry

Chapter 3. Conic Sections

3.4. The Area of a Parabola—Proofs of Theorems

```
Mngergaduste insts in
Alexander Ostermann
Gerhard Wanner
```


Geometry by Its History

Table of contents

(1) Theorem 3.4.A (Archimedes)

Theorem 3.4.A (Archimedes)

Theorem 3.4.A. With \mathcal{P} as the area under the parabola given in Figure 3.12 (left) and with \mathcal{T} as the area of the large isosceles triangle, we have $\mathcal{P}=\frac{4}{3} \mathcal{T}$.

Fig. 3.12. The quadrature of the parabola
Proof. Let the base of the large light-grey isosceles triangle be $2 b$ and the height be a. In terms of coordinates, we have the point (b, a) on the parabola $y=x^{2}$ so that $a=b^{2}$ (this is where we use the fact that the curve is a parabola; of course, we could scale the y-coordinate to deal with a more general case). By hypothesis, the area of this triangle is \mathcal{T}. Then the area is $\mathcal{T}=a b$.

Theorem 3.4.A (Archimedes)

Theorem 3.4.A. With \mathcal{P} as the area under the parabola given in Figure 3.12 (left) and with \mathcal{T} as the area of the large isosceles triangle, we have $\mathcal{P}=\frac{4}{3} \mathcal{T}$.

Fig. 3.12. The quadrature of the parabola
Proof. Let the base of the large light-grey isosceles triangle be $2 b$ and the height be a. In terms of coordinates, we have the point (b, a) on the parabola $y=x^{2}$ so that $a=b^{2}$ (this is where we use the fact that the curve is a parabola; of course, we could scale the y-coordinate to deal with a more general case). By hypothesis, the area of this triangle is \mathcal{T}. Then the area is $\mathcal{T}=a b$.

Theorem 3.4.A (continued 1)

Proof (continued).

Fig. 3.12. The quadrature of the parabola
Next, we bisect the right half of the base of the light-grey triangle and introduce a line segment perpendicular to the base. We see that this results in the point $(b / 2, a / 4)$ on the parabola $y=x^{2}$, since $a / 4=(b / 2)^{2}$ (because $b^{2}=a$). So the medium-grey triangle on the right has base b and height $a / 4$, and therefore area $a b / 8$. There is a second medium-grey triangle on the left of the same dimensions, so the area of the two medium-grey triangles together is $a b / 4=\mathcal{T} / 4$.

Theorem 3.4.A (continued 2)

Proof (continued).

Fig. 3.12. The quadrature of the parabola
Similarly by bisecting, the four parts of the base we get four dark-grey triangles, each of area $a b / 64=\mathcal{T} / 64$. Summing we get a total dark-grey area of $\mathcal{T} / 16$ Recursively, for each natural number n we get 2^{n-1} triangles of total area $\mathcal{T} / 4^{n-1}$. We can now sum a series to get

$$
\sum_{n=1}^{\infty} \mathcal{T} / 4^{n-1}=4 \mathcal{T} \frac{(1 / 4)}{1-(1 / 4)}=\frac{4}{3} \mathcal{T},
$$

Theorem 3.4.A (continued 2)

Proof (continued).

Fig. 3.12. The quadrature of the parabola
Similarly by bisecting, the four parts of the base we get four dark-grey triangles, each of area $a b / 64=\mathcal{T} / 64$. Summing we get a total dark-grey area of $\mathcal{T} / 16$ Recursively, for each natural number n we get 2^{n-1} triangles of total area $\mathcal{T} / 4^{n-1}$. We can now sum a series to get

$$
\sum_{n=1}^{\infty} \mathcal{T} / 4^{n-1}=4 \mathcal{T} \frac{(1 / 4)}{1-(1 / 4)}=\frac{4}{3} \mathcal{T}
$$

as claimed.

Theorem 3.4.A (continued 3)

Proof (continued).

Fig. 3.12. The quadrature of the parabola
Alternatively (if we want to avoid the use of infinite series), we can take $\mathcal{T}=a b$ and partition it into three equal squares, each of area $a b / 3$ (and sides of length $\sqrt{a b / 3}$), and arrange them as given in Figure 3.12 (right) in light-grey. We similarly partition the medium-grey area $\mathcal{T} / 4$ into three equal squares, each of area $a b / 12$ (and sides of length $\sqrt{a b / 12}=\sqrt{a b / 3} / 2$), and arrange them as given in Figure 3.12 (right) in medium-grey. Recursively we can arrange the other areas $\mathcal{T} / 4^{n-1}$ similarly and see that the resulting total area is $4 \mathcal{T} / 3$ (by comparing \mathcal{T} to the total area in Figure 3.12 right), as claimed.

Theorem 3.4.A (continued 3)

Proof (continued).

Fig. 3.12. The quadrature of the parabola
Alternatively (if we want to avoid the use of infinite series), we can take $\mathcal{T}=a b$ and partition it into three equal squares, each of area $a b / 3$ (and sides of length $\sqrt{a b / 3}$), and arrange them as given in Figure 3.12 (right) in light-grey. We similarly partition the medium-grey area $\mathcal{T} / 4$ into three equal squares, each of area $a b / 12$ (and sides of length $\sqrt{a b / 12}=\sqrt{a b / 3} / 2$), and arrange them as given in Figure 3.12 (right) in medium-grey. Recursively we can arrange the other areas $\mathcal{T} / 4^{n-1}$ similarly and see that the resulting total area is $4 \mathcal{T} / 3$ (by comparing \mathcal{T} to the total area in Figure 3.12 right), as claimed.

