History of Geometry

Chapter 4. Further Results in Euclidean Geometry

4.1. The Conchoid of Nicodemes, the Trisection of an Angle-Proofs of Theorems

Table of contents

(1) Theorem 4.1.A. Pappus' Proposition IV. 32 in Collection
(2) Theorem 4.1.B. Pappus' Proposition IV. 31 in Collection

Theorem 4.1.A. Pappus' Proposition IV. 32 in Collection

Theorem 4.1.A. (Pappus' Proposition IV. 32 in Collection) Assuming the existence of the conchoid of Nicomedes, we can trisect any angle.

Proof. Let β be the angle EAD in Figure 4.3 (modified; see below). Let G be the midpoint of segment $D C$, so that $D G=G C=a$. Construct a parallel to $B C$ through point G (Euclid, Book I Proposition 31), and let M be the point of intersection of this line with BD. By Euclid, Book I Proposition 29, angle CBD (a right angle) equals angle GMD, and angle $M G D$ equals angle $B C D$.

Theorem 4.1.A. Pappus' Proposition IV. 32 in Collection

Theorem 4.1.A. (Pappus' Proposition IV. 32 in Collection) Assuming the existence of the conchoid of Nicomedes, we can trisect any angle.

Proof. Let β be the angle $E A D$ in Figure 4.3 (modified; see below). Let G be the midpoint of segment $D C$, so that $D G=G C=a$. Construct a parallel to $B C$ through point G (Euclid, Book I Proposition 31), and let M be the point of intersection of this line with $B D$. By Euclid, Book I Proposition 29, angle CBD (a right angle) equals angle GMD, and angle $M G D$ equals angle $B C D$.

Theorem 4.1.A. Pappus' Proposition IV. 32 in Collection

Theorem 4.1.A. (Pappus' Proposition IV. 32 in Collection) Assuming the existence of the conchoid of Nicomedes, we can trisect any angle.

Proof. Let β be the angle $E A D$ in Figure 4.3 (modified; see below). Let G be the midpoint of segment $D C$, so that $D G=G C=a$. Construct a parallel to $B C$ through point G (Euclid, Book I Proposition 31), and let M be the point of intersection of this line with $B D$. By Euclid, Book I Proposition 29, angle CBD (a right angle) equals angle GMD, and angle $M G D$ equals angle $B C D$.

Theorem 4.1.A (continued)

Proof (continued).

So triangle CBD is similar to triangle GMD since the corresponding angles are equal (Euclid, Book VI Proposition 4), and since $D G=\frac{1}{2} D C$ then $D M=\frac{1}{2} B D$. Triangle $B M G$ and triangle $D M G$ are congruent by SAS (Euclid, Book I Proposition 4) so that $B G=a$ and triangles $B G C$ and GBD are isosceles. Consequently, we have β at C (alternate angles, Euclid Book I Proposition 29), β at B (isosceles triangle, Euclid Book I Proposition 5), 2β at G (exterior angle, Euclid Book I Proposition 32), and angle $B A G$ is 2β (isosceles triangle), so β is $1 / 3$ of the original angle α at A, as claimed.

Theorem 4.1.A (continued)

Proof (continued).

So triangle CBD is similar to triangle GMD since the corresponding angles are equal (Euclid, Book VI Proposition 4), and since $D G=\frac{1}{2} D C$ then $D M=\frac{1}{2} B D$. Triangle $B M G$ and triangle $D M G$ are congruent by SAS (Euclid, Book I Proposition 4) so that $B G=a$ and triangles $B G C$ and GBD are isosceles. Consequently, we have β at C (alternate angles, Euclid Book I Proposition 29), β at B (isosceles triangle, Euclid Book I Proposition 5), 2β at G (exterior angle, Euclid Book I Proposition 32), and angle $B A G$ is 2β (isosceles triangle), so β is $1 / 3$ of the original angle α at A, as claimed.

Theorem 4.1.B. Pappus' Proposition IV. 31

Theorem 4.1.B. (Pappus' Proposition IV. 31 in Collection) Assuming the existence of the hyperbola, we can trisect any angle.

Proof. For the argument, we borrow some results from analytic geometry by introducing a coordinate system. Let point F be the origin of a Cartesian coordinate system with x-axis running horizontally and y-axis running vertically (but with the positive direction as downward; then and (x, y)-coordinate system is left-handed, or we could deal with a right-handed (y, x)-coordinate system, but neither of these choices will affect our proof). See the modified version of Figure 4.3 below.

Theorem 4.1.B. Pappus' Proposition IV. 31

Theorem 4.1.B. (Pappus' Proposition IV. 31 in Collection) Assuming the existence of the hyperbola, we can trisect any angle.

Proof. For the argument, we borrow some results from analytic geometry by introducing a coordinate system. Let point F be the origin of a Cartesian coordinate system with x-axis running horizontally and y-axis running vertically (but with the positive direction as downward; then and (x, y)-coordinate system is left-handed, or we could deal with a right-handed (y, x)-coordinate system, but neither of these choices will affect our proof). See the modified version of Figure 4.3 below.

Theorem 4.1.B. Pappus' Proposition IV. 31

Theorem 4.1.B. (Pappus' Proposition IV. 31 in Collection) Assuming the existence of the hyperbola, we can trisect any angle.

Proof. For the argument, we borrow some results from analytic geometry by introducing a coordinate system. Let point F be the origin of a Cartesian coordinate system with x-axis running horizontally and y-axis running vertically (but with the positive direction as downward; then and (x, y)-coordinate system is left-handed, or we could deal with a right-handed (y, x)-coordinate system, but neither of these choices will affect our proof). See the modified version of Figure 4.3 below.

Theorem 4.1.B (continued 1)

Proof (continued).

Introduce the hyperbola $x y=c d$. This has asymptotes of $F A$ (the " y-axis") and $F B$ (the " x-axis"), and passes through point E which has coordinates $x=c$ and $y=d$. Take a circle of radius $2 a$ with center E and find its intersection with the hyperbola at point H (which we give as having coordinates x and y, fixed values here). Construct a perpendicular to BC through point H (Euclid, Book I Proposition 11) and let the intersection of $B C$ and the perpendicular be point C. Construct line $A C$ (Euclid, Postulate 1) and let D be the point of intersection of $A C$ with $B E$

Theorem 4.1.B (continued 1)

Proof (continued).

Introduce the hyperbola $x y=c d$. This has asymptotes of $F A$ (the " y-axis") and $F B$ (the " x-axis"), and passes through point E which has coordinates $x=c$ and $y=d$. Take a circle of radius $2 a$ with center E and find its intersection with the hyperbola at point H (which we give as having coordinates x and y, fixed values here). Construct a perpendicular to $B C$ through point H (Euclid, Book I Proposition 11) and let the intersection of $B C$ and the perpendicular be point C. Construct line $A C$ (Euclid, Postulate 1) and let D be the point of intersection of $A C$ with $B E$.

Theorem 4.1.B (continued 2)

Proof (continued).

Angles FCA and DAE are equal (Euclid, Book I Proposition 29), say they have measure β. Since angles $A F C$ and $A E D$ are right angles by construction, then angles $F A C$ and $A D E$ are equal (Euclid, Book I Proposition 32). Hence, triangles AFC and DEA are similar (Euclid, Book VI Proposition 4) and so $\frac{D E}{A F}=\frac{D E}{d}=\frac{A E}{C F}=\frac{c}{x}$ or $x(D E)=c d$. But we have for these distances that $x y=c d$, so we must have $D E=y$. Then by Euclid, Book I Proposition 33, DC is parallel to EH. So CDEH is a parallelogram and $C D=2$ a (Euclid, Book I Proposition 34).

Theorem 4.1.B (continued 2)

Proof (continued).

Angles FCA and DAE are equal (Euclid, Book I Proposition 29), say they have measure β. Since angles $A F C$ and $A E D$ are right angles by construction, then angles $F A C$ and $A D E$ are equal (Euclid, Book I Proposition 32). Hence, triangles AFC and DEA are similar (Euclid, Book VI Proposition 4) and so $\frac{D E}{A F}=\frac{D E}{d}=\frac{A E}{C F}=\frac{c}{x}$ or $x(D E)=c d$. But we have for these distances that $x y=c d$, so we must have $D E=y$. Then by Euclid, Book I Proposition 33, DC is parallel to EH. So CDEH is a parallelogram and $C D=2$ a (Euclid, Book I Proposition 34).

Theorem 4.1.B (continued 3)

Theorem 4.1.B. (Pappus' Proposition IV. 31 in Collection)
Assuming the existence of the hyperbola, we can trisect any angle.

Proof (continued).

So we have that line $A C$ satisfies the condition that it intersects $B E$ at point D and the distance $D C=2 a$. As argued in Theorem 4.1.A, this implies that $\beta=\alpha / 3$.

Theorem 4.1.B (continued 3)

Theorem 4.1.B. (Pappus' Proposition IV. 31 in Collection) Assuming the existence of the hyperbola, we can trisect any angle.

Proof (continued).

So we have that line $A C$ satisfies the condition that it intersects $B E$ at point D and the distance $D C=2 a$. As argued in Theorem 4.1.A, this implies that $\beta=\alpha / 3$.
NOTE. We found the same point C as in Theorem 4.1.A, but we did so using the hyperbola, and avoided the use of the conchoid in this proof.

