History of Geometry

Chapter 4. Further Results in Euclidean Geometry

 4.2. The Archimedean Spiral-Proofs of Theorems```
Mngegragoncivematics
Alexander Ostermann
Gerhard Wanner
```


## Geometry by Its History

## Table of contents

(1) Archimedes' Proposition XXIV of On Spirals

## Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3} \pi(2 \pi a)^{2}\right.$, where the spiral is $r=a \theta]$.

Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and Lengths in Polar Coordinates, if $r=f(\theta)$ in polar coordinates $(r, \theta)$, the the area bounded by $r=f(\theta)$ for $\theta=\alpha$ to $\theta=\beta$ is $A=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta$

## Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3} \pi(2 \pi a)^{2}\right.$, where the spiral is $r=a \theta$ ].

Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and Lengths in Polar Coordinates, if $r=f(\theta)$ in polar coordinates $(r, \theta)$, the the area bounded by $r=f(\theta)$ for $\theta=\alpha$ to $\theta=\beta$ is $A=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta$. For the Archimedean spiral we have $r=f(\theta)=a \theta$, so in "the first turn of the spiral," the area bounded is

$$
\begin{gathered}
A=\int_{0}^{2 \pi} \frac{1}{2}(a \theta)^{2} d \theta=\frac{a^{2}}{2} \int_{0}^{2 \pi} \theta^{2} d \theta=\left.\frac{a^{2}}{2} \frac{\theta^{3}}{3}\right|_{0} ^{2 \pi}=\frac{a^{2}}{2} \frac{(2 \pi)^{3}}{3}-\frac{a^{2}}{2} \frac{(0)^{3}}{3} \\
=\frac{1}{3} a^{2} \frac{(2 \pi)(2 \pi)^{2}}{2}=\frac{1}{3} a^{2} \pi(2 \pi)^{2}=\frac{1}{3} \pi(2 \pi a)^{2},
\end{gathered}
$$

## Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3} \pi(2 \pi a)^{2}\right.$, where the spiral is $r=a \theta]$.

## Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and

 Lengths in Polar Coordinates, if $r=f(\theta)$ in polar coordinates $(r, \theta)$, the the area bounded by $r=f(\theta)$ for $\theta=\alpha$ to $\theta=\beta$ is $A=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta$. For the Archimedean spiral we have $r=f(\theta)=a \theta$, so in "the first turn of the spiral," the area bounded is$$
\begin{gathered}
A=\int_{0}^{2 \pi} \frac{1}{2}(a \theta)^{2} d \theta=\frac{a^{2}}{2} \int_{0}^{2 \pi} \theta^{2} d \theta=\left.\frac{a^{2}}{2} \frac{\theta^{3}}{3}\right|_{0} ^{2 \pi}=\frac{a^{2}}{2} \frac{(2 \pi)^{3}}{3}-\frac{a^{2}}{2} \frac{(0)^{3}}{3} \\
=\frac{1}{3} a^{2} \frac{(2 \pi)(2 \pi)^{2}}{2}=\frac{1}{3} a^{2} \pi(2 \pi)^{2}=\frac{1}{3} \pi(2 \pi a)^{2},
\end{gathered}
$$

as claimed.

