History of Geometry

Chapter 4. Further Results in Euclidean Geometry 4.2. The Archimedean Spiral—Proofs of Theorems

Archimedes' Proposition XXIV of On Spirals

Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3}\pi(2\pi a)^2\right]$, where the spiral is $r = a\theta$.

Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and Lengths in Polar Coordinates, if $r = f(\theta)$ in polar coordinates (r, θ) , the the area bounded by $r = f(\theta)$ for $\theta = \alpha$ to $\theta = \beta$ is $A = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 d\theta$.

Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3}\pi(2\pi a)^2\right]$, where the spiral is $r = a\theta$.

Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and Lengths in Polar Coordinates, if $r = f(\theta)$ in polar coordinates (r, θ) , the the area bounded by $r = f(\theta)$ for $\theta = \alpha$ to $\theta = \beta$ is $A = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 d\theta$. For the Archimedean spiral we have $r = f(\theta) = a\theta$, so in "the first turn of the spiral," the area bounded is

$$A = \int_0^{2\pi} \frac{1}{2} (a\theta)^2 d\theta = \frac{a^2}{2} \int_0^{2\pi} \theta^2 d\theta = \frac{a^2}{2} \frac{\theta^3}{3} \Big|_0^{2\pi} = \frac{a^2}{2} \frac{(2\pi)^3}{3} - \frac{a^2}{2} \frac{(0)^3}{3}$$
$$= \frac{1}{3} a^2 \frac{(2\pi)(2\pi)^2}{2} = \frac{1}{3} a^2 \pi (2\pi)^2 = \frac{1}{3} \pi (2\pi a)^2,$$

as claimed.

Proposition XXIV of On Spirals

Proposition XXIV. The area bounded by the first turn of the spiral and the initial line is equal to one-third of the 'first circle' $\left[=\frac{1}{3}\pi(2\pi a)^2\right]$, where the spiral is $r = a\theta$.

Proof. Recall from Calculus 3 (MATH 2110) Section 11.5. Areas and Lengths in Polar Coordinates, if $r = f(\theta)$ in polar coordinates (r, θ) , the the area bounded by $r = f(\theta)$ for $\theta = \alpha$ to $\theta = \beta$ is $A = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 d\theta$. For the Archimedean spiral we have $r = f(\theta) = a\theta$, so in "the first turn of the spiral," the area bounded is

$$A = \int_0^{2\pi} \frac{1}{2} (a\theta)^2 d\theta = \frac{a^2}{2} \int_0^{2\pi} \theta^2 d\theta = \frac{a^2}{2} \frac{\theta^3}{3} \Big|_0^{2\pi} = \frac{a^2}{2} \frac{(2\pi)^3}{3} - \frac{a^2}{2} \frac{(0)^3}{3}$$
$$= \frac{1}{3} a^2 \frac{(2\pi)(2\pi)^2}{2} = \frac{1}{3} a^2 \pi (2\pi)^2 = \frac{1}{3} \pi (2\pi a)^2,$$

as claimed.