History of Geometry

Chapter 5. Trigonometry

5.1. Ptolemy and the Chord Function-Proofs of Theorems

```
Undeggadarte Tertion M
Alexander Ostermann Gerhard Wanner
```


Geometry by Its History

Table of contents

(1) Lemma 5.1. Ptolemy's Theorem

Lemma 5.1. Ptolemy's Theorem

Lemma 5.1 (Ptolemy's Theorem). Let a quadrilateral with sides a, b, c, d be inscribed in a circle. Then the diagonals δ_{1} and δ_{2} satisfy $a c+b d=\delta_{1} \delta_{2}$.

Proof. First, let E be the unique point
on line segment $A C$ such that the angle
$\angle E D A$ equals in measure the angle
$\angle C D B$ (the measures of these angles
are labeled α in Figure 5.4).
Euclid's Proposition III. 21 states:
"In a circle the angles in the same
segment equal one another." This means
that in a circle, if two angles
inscribed in a circle (such an angle has
its vertex and two points on the sides of
the angle all on the circle) determine the same length chord, then the angles are equal in measure.

Lemma 5.1. Ptolemy's Theorem

Lemma 5.1 (Ptolemy's Theorem). Let a quadrilateral with sides a, b, c, d be inscribed in a circle. Then the diagonals δ_{1} and δ_{2} satisfy $a c+b d=\delta_{1} \delta_{2}$.

Proof. First, let E be the unique point on line segment $A C$ such that the angle $\angle E D A$ equals in measure the angle $\angle C D B$ (the measures of these angles are labeled α in Figure 5.4).
Euclid's Proposition III. 21 states: "In a circle the angles in the same segment equal one another." This means that in a circle, if two angles inscribed in a circle (such an angle has its vertex and two points on the sides of

Fig. 5.4. Proof of Ptolemy's lemma the angle all on the circle) determine the same length chord, then the angles are equal in measure.

Lemma 5.1. Ptolemy's Theorem

Lemma 5.1 (Ptolemy's Theorem). Let a quadrilateral with sides a, b, c, d be inscribed in a circle. Then the diagonals δ_{1} and δ_{2} satisfy $a c+b d=\delta_{1} \delta_{2}$.

Proof. First, let E be the unique point on line segment $A C$ such that the angle $\angle E D A$ equals in measure the angle $\angle C D B$ (the measures of these angles are labeled α in Figure 5.4).
Euclid's Proposition III. 21 states: "In a circle the angles in the same segment equal one another." This means that in a circle, if two angles inscribed in a circle (such an angle has its vertex and two points on the sides of

Fig. 5.4. Proof of Ptolemy's lemma the angle all on the circle) determine the same length chord, then the angles are equal in measure.

Lemma 5.1. Ptolemy's Theorem (continued)

Lemma 5.1 (Ptolemy's Theorem). Let a quadrilateral with sides a, b, c, d be inscribed in a circle. Then the diagonals δ_{1} and δ_{2} satisfy $a c+b d=\delta_{1} \delta_{2}$.

Proof. Since angles $\angle C B D$ and $\angle C A D$ both determine chord $C D$, then these angles are equal by Euclid's Proposition (the measures of these angles are labeled β in Figure 5.4). Therefore triangles $\triangle E D A$ and $\triangle C D B$ are similar (AAA) and so $b / \delta_{1}=u / d$ and $a / \delta_{1}=v / c$. This implies
 $b d+a c=\delta_{1} u+\delta_{1} v=\delta_{1}(u+v)=\delta_{2} \delta_{2}$, Fig. 5.4. Proof of Ptolemy's lemma as claimed.

