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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1)

Theorem 5.8. (Theorem 1 of Newton’s Principia Mathematica.)
“The areas, which revolving bodies describe by radii drawn to an
immoveable centre of force, do lie in some immoveable planes, and are
proportional to the times in which they are described.”

Proof. We go through the argument given in Ostermann and Wanner
(which is the same as given by Newton in Principia). The argument is a
discretized version of the physical problem. Newton appeals to another
result (Lemma III in his Book I) to move from the discrete to the
continuous case.

We place the Sun at point S (the “centre of force”) and
approximate the orbit with points A, B, C , D, E , etc. The force f then
acts on the object orbiting the Sun by pulling the object in the direction of
the Sun. We let the force act on the object at point A and then assume
the object moves in a straight line over time period ∆t without the form
acting from A to B (the motion is along a straight line by Newton’s First
Law, or “Lex 1”). See the figure below.
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 1)

Proof (continued). Next, we let
the force act again at point B
by an amount f ∆t. Now
consider the triangles ABS and
BcS in the figure. We claim that
these triangles have the same
areas. We argue this below.

The Figure for Newton’s Theorem 1
from Motte’s 1846 translation of
Principia.
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 2)

Proof (continued). To see that triangles ABS and BcS have the same
area, reflect triangle ABS about the line containing points S and B and let
A′ denote the image of A. We then see that the triangle have a common
base SB and the same altitude. So the areas are the same (by Euclid I.41).
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 3)

Proof (continued). Next, we let the force affect the object at point B.
By Newton’s Second Law (or Lex 2), the force acts along the line from B
to S ; the “change of motion” (as it’s called in Lex 2) is represented as the

vector from B to V (we denote this vector, and similar vectors, as
−→
BV ) in

Figure 5.29 (right) below. Adding this change in motion to the velocity of
the object before the application of the force (represented by the vector
−→
AB in the figure; think of it as the change in position over time ∆t), we
get the new velocity by adding vectors−→
AB and

−→
BV to get the resultant

vector
−→
AV . We translate

−→
AV to

point B to get velocity vector
−→
BC .
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 4)

Proof (continued). By construction above, vector
−→
AB equals vector

−→
BC .

So when translating vectors
−→
AB and

−→
AV to point B, we see that segment

Cc is parallel to segment SB. So the area of triangles BCS and BcS are
the same since they have the same base, SB, and the same heights
(represented, respectively, in the figure by the segments with the
right-angle symbols which end at C and c ; we are again using Euclid I.41
here).
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 5)

Proof (continued). Since, as
shown above, the triangles ABS
and BcS have the same areas,
then we have that triangles ABS
and BCS have the same areas.
Similar, the areas of triangles
ABS , BCS , CDS , DES , etc.
are all the same.

The Figure for Newton’s Theorem 1
from Motte’s 1846 translation of
Principia.

So the claim holds when we have
the discrete version of the
problem with the force applied
as impulses at equal time steps ∆t.
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Theorem 5.8 (Newton’s Theorem 1, Principia Mathematica)

Theorem 5.8 (Newton’s Theorem 1, continued 6)

Theorem 5.8. (Theorem 1 of Newton’s Principia Mathematica.)
“The areas, which revolving bodies describe by radii drawn to an
immoveable centre of force, do lie in some immoveable planes, and are
proportional to the times in which they are described.”

Proof (continued). To complete the proof, Newton now applies his
Lemma III which, in essence, involve taking a limit as ∆t → 0. Ostermann
and Wanner describe Newton’s approach as similar to the numerical
technique called the “Euler method” which is used to approximate
solutions to differential equations.

In the spirit of Calculus 1 (MATH 1910), we could consider the area swept
out by the line segment joining the Sun and the orbiting object as a
function time A(t). We then have from Newton’s discrete argument that

∆A/∆t is a constant. So we have lim
∆t→0

∆A

∆t
=

dA

dt
is constant (this is the

constant of proportionality in Newton’s theorem).
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Newton’s Lemma

Newton’s Lemma

Newton’s Lemma. Let APQ be an ellipse with focus S and suppose P to
be the position of the planet moving towards Q, while the point R moves
on the tangent with S , Q, P collinear. Let T be the orthogonal projection
of Q onto PS (see Figure 5.30, right). Then if the distance PQ tends to
zero, we have RQ ≈ (Constant) · QT 2, where the constant is independent
of the position of P on the ellipse.
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Newton’s Lemma

Newton’s Lemma, continued 1

Proof.

From this figure, we have by Apollonius II.6 (see Section 3.2. The Ellipse,
Figure 3.7(b)) that the tangent PR is parallel to the “diameter” DCK
which is conjugate to diameter GCP. Let the lengths of these diameters
be 2d and 2c , respectively, as labeled in the Figure 5.31. Through focus H
we draw a parallel to DK (light dotted line) to determine point of
intersection I with segment SP. Through point Q we draw a parallel to
DK (light solid line) to determine point of intersection V with segment
CP (see the inset in Figure 5.31).
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Newton’s Lemma

Newton’s Lemma, continued 2

Proof (continued).

By Apollonius III.48 (see Section 3.2. The Ellipse), the normal to DK from
point F to point P (let PF = h) is he bisector of angle SPH. That is,
triangle IPH is an isosceles triangle and so (by Euclid I.6) IP = PH. Since
SC = CH, then by Thales’ Intercept Theorem (Theorem 1.1) we have
SE = EI . By Apollonius III.52 (the alternative definition of an ellipse from
Section 3.2. The Ellipse), we have SE + EI + IP + PH = 2a. Substituting
EI for SP and substituting IP for PH, we have: EP = EI + IP = a. (5.55)
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Newton’s Lemma

Newton’s Lemma, continued 2
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Newton’s Lemma

Newton’s Lemma, continued 3

Proof (continued).

If the ellipse were in fact a circle, then by Euclid III.35 (see Section 2.2.
Book III) we would have GV · VP = QV 2 (here we would need to extend
QV until it is a chord of the circle; see the inset in Figure 5.31).
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Newton’s Lemma

Newton’s Lemma, continued 4

Proof (continued).

We now take the ellipse (along with the segments GV , VP, and QV ) and
stretch/shrink it in the direction of the blue “diameter” by a factor 1/c ,
and stretch/contract it in the direction of the red “diameter” by a factor
of 1/d . This results in a circle of radius 1. Since GV and VP lie along the
blue diameter then these are transformed to the circle with lengths GV /c
and VP/c . Since QV lies on a line parallel to the blue diameter then this
is transformed to the circle with length QV /d . So from the above
equation GV · VP = QV 2 for the chords of a circle, we have

GV · VP

c2
=

QV 2

d2
, or: (3) VP =

c2

GV
· QV 2

d2
.
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Newton’s Lemma

Newton’s Lemma, continued 5

Proof (continued).

Next, we express VP in terms of RQ, and express QV in terms of QT (see
the inset). Now triangle XVP is similar to triangle ECP, because they
share an angle at point P and angles PXV and PEC are corresponding
angles for parallel line segments QV and EF with transversal CP (see
Figure 1.7 center in Section 1.3. Properties of Angles); so the three angles
of triangles XVP and ECP are the same. So XP/VP = EP/CP or (since
EP = a by (5.55)) XP/VP = a/c , or: (2) XP = VP · a/c .
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Newton’s Lemma

Newton’s Lemma, continued 6

Proof (continued).

Triangle QTX is similar to triangle PFE since both of these are right
triangles and angles QXT and PEF are alternate interior angles (or
“parallel angles,” see Figure 1.7 let in Section 1.3. Properties of Angles)
for parallel line segments QX and EF with transversal EX ; so the three
angles of triangles QTX and PFE are the same. Also QX/QT = PE/PF
or (since PF = h) QX/QT = a/h, or:

(6) QX = QT · a/h.
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Newton’s Lemma

Newton’s Lemma, continued 7

Proof (continued).

We now consider PQ “infinitely small.” In contemporary (rigorous) terms,
we consider a limit as Q → P and Q is on the ellipse. We see from the
inset of Figure 5.31 that:

(1)RQ ≈ XP, (4)GV ≈ GP = 2c , (5)QV ≈ QX .

In fact, each of these can be written as equalities in the limit.
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Newton’s Lemma

Newton’s Lemma, continued 8

Proof (continued). We now have:

RQ ≈ XP by (1)

= VP · a

c
by (2)

=

(
c2

GV
· QV 2

d2

)
· a

c
since by (3) VP =

c2

GV
· QV 2

d2

≈ c2

2c
· QV 2

d2
· a

c
since by (4) GV ≈ GP = 2c

≈ c2

2c
· QX 2

d2
· a

c
since by (5) QV ≈ QX

=
c2

2c
· (QT · a/h)2

d2
· a

c
since by (6) QX = QT · a/h

=
a3

2h2d2
· QT 2.
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Newton’s Lemma

Newton’s Lemma, continued 9

Proof (continued). We now apply Apollonius VII.31, which is stated in
Exercise 3.5.2 as: “All parallelograms circumscribed about any conjugate
diameters of a given ellipse are equal.”

Notice that 1/4 of the areas of the inscribed rectangles above are hd (left)
and ab (right). Since the areas of the parallelograms are the same by
Apollonius VII.31, then hd = ab.
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Newton’s Lemma

Newton’s Lemma, continued 10

Newton’s Lemma. Let APQ be an ellipse with focus S and suppose P to
be the position of the planet moving towards Q, while the point R moves
on the tangent with S , Q, P collinear. Let T be the orthogonal projection
of Q onto PS (see Figure 5.30, right). Then if the distance PQ tends to
zero, we have RQ ≈ (Constant) · QT 2, where the constant is independent
of the position of P on the ellipse.

Proof (continued). So with hd = ab, we have from the approximation

RQ ≈ a3

2h2d2
· QT 2 (established above) that

RQ ≈ a3

2h2d2
· QT 2 =

a3

2a2b2
· QT 2 =

a

2b2
· QT 2.

That is, RQ ≈ (Constant) · QT 2 where Constant =
a

2b2
and the constant

is independent of the position of P on the ellipse, as claimed.
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Theorem 5.9. (Proposition 11 of Newton’s Principia)

Theorem 5.9. (Proposition 11 of Newton’s Principia
Mathematica)

Theorem 5.9. (Proposition 11 of Newton’s Principia Mathematica.)
A body P, orbiting according to Kepler 1 and 2 [i.e., Kepler’s 1st and 2nd
Laws], moves under the effect of a centripetal force, directed to the centre

S , satisfying the law f =
Constant

r2
, where r is the distance SP.

Proof. By equation (5.53) we have that the force f is proportional to RQ.
By Newton’s Lemma, RQ is approximately proportional to QT 2 (and so f
is approximately proportional to QT 2). The area of the triangle SPQ in
Figure 5.30 right is SP · QT/2 and this area is a constant for a fixed ∆t,
as seen in the proof of Kepler’s Second Law (Theorem 5.8).
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Theorem 5.9. (Proposition 11 of Newton’s Principia)

Theorem 5.9. (Proposition 11 of Newton’s Principia,
continued)

Theorem 5.9. (Proposition 11 of Newton’s Principia Mathematica.)
A body P, orbiting according to Kepler 1 and 2 [i.e., Kepler’s 1st and 2nd
Laws], moves under the effect of a centripetal force, directed to the centre

S , satisfying the law f =
Constant

r2
, where r is the distance SP.

Proof (continued). Since SP · QT/2 is constant, then QT is inversely
proportional to SP. Hence f is approximately inversely proportional to

SP = r . That is, f ≈ Constant

r2
. By taking a limit as ∆t → 0, we have

Q → P and the approximation becomes precise.
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