History of Geometry

Chapter 5. Trigonometry

5.2. Regiomontanus and Euler's Trigonometric Functions-Proofs of Theorems

Table of contents

(1) Theorem 5.2. Addition Formulas

Theorem 5.2. Addition Formulas

Theorem 5.2. (Addition Formulas). The following identities hold:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \cos \beta \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

Proof. Geometric proofs of the summation
formulas for sine and cosine are to be
given in Exercise 5.3. The summation
formula for tangent results by dividing the
dividing the one for sine by the one for
cosine. However, we now give a direct geometric proof independent of the proofs for sine and cosine.

Theorem 5.2. Addition Formulas

Theorem 5.2. (Addition Formulas). The following identities hold:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \cos \beta \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

Proof. Geometric proofs of the summation formulas for sine and cosine are to be given in Exercise 5.3. The summation formula for tangent results by dividing the dividing the one for sine by the one for cosine. However, we now give a direct geometric proof independent of the proofs for sine and cosine. Consider the figure

Theorem 5.2. Addition Formulas

Theorem 5.2. (Addition Formulas). The following identities hold:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \cos \beta \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

Proof. Geometric proofs of the summation formulas for sine and cosine are to be given in Exercise 5.3. The summation formula for tangent results by dividing the dividing the one for sine by the one for cosine. However, we now give a direct geometric proof independent of the proofs for sine and cosine. Consider the figure at the right. We give a geometric proof
 for α an acute angle, and the general case will follow.

Theorem 5.2. Addition Formulas

Theorem 5.2. (Addition Formulas). The following identities hold:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \cos \beta \\
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\tan (\alpha+\beta) & =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

Proof. Geometric proofs of the summation formulas for sine and cosine are to be given in Exercise 5.3. The summation formula for tangent results by dividing the dividing the one for sine by the one for cosine. However, we now give a direct geometric proof independent of the proofs for sine and cosine. Consider the figure at the right. We give a geometric proof
 for α an acute angle, and the general case will follow.

Theorem 5.2. Addition Formulas, continued

Proof. Since angles $\angle 0 A D$ and $\angle E A B$ are opposite angle, then they are congruent. Since $\triangle A D 0$ and $\triangle A B E$ are right triangles triangles with two equal acute angles, then they are similar and so $\measuredangle A E B=\alpha$. In $\triangle A B E$ we have $\tan \alpha=A B / \tan \beta$ or $A B=\tan \alpha \tan \beta$, so that $0 A=1-A B$ $=1-\tan \alpha \tan \beta$. By Thales Intercept Theorem (Theorem 1.1) $\tan (\alpha+\beta)$
 $=(E D / 0 A)(0 C)$ and $(0 C) /(1)=(E F) /(E D)$. Therefore $\tan (\alpha+\beta)=(E F) /(0 A)$. We see from $\triangle A B E$ that $E B=\tan \beta$, and from $\triangle O B F$ that $B F=\tan \alpha$. Hence $E F=E B+B F=\tan \alpha+\tan \beta$. We now have $\tan (\alpha+\beta)=\frac{E F}{0 A}=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha+\tan \beta}$, as claimed.

Theorem 5.2. Addition Formulas, continued

Proof. Since angles $\angle 0 A D$ and $\angle E A B$ are opposite angle, then they are congruent. Since $\triangle A D 0$ and $\triangle A B E$ are right triangles triangles with two equal acute angles, then they are similar and so $\measuredangle A E B=\alpha$. In $\triangle A B E$ we have $\tan \alpha=A B / \tan \beta$ or $A B=\tan \alpha \tan \beta$, so that $0 A=1-A B$ $=1-\tan \alpha \tan \beta$. By Thales Intercept Theorem (Theorem 1.1) $\tan (\alpha+\beta)$
 $=(E D / 0 A)(0 C)$ and $(0 C) /(1)=(E F) /(E D)$. Therefore $\tan (\alpha+\beta)=(E F) /(0 A)$. We see from $\triangle A B E$ that $E B=\tan \beta$, and from $\triangle 0 B F$ that $B F=\tan \alpha$. Hence $E F=E B+B F=\tan \alpha+\tan \beta$.
We now have $\tan (\alpha+\beta)=\frac{E F}{0 A}=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha+\tan \beta}$, as claimed.

