History of Geometry

Chapter 5. Trigonometry

5.9. Trigonometric Formulation for Conics-Proofs of Theorems

Table of contents

(1) Theorem 5.9.A
(2) Theorem 5.9.B

Theorem 5.9.A

Theorem 5.9.A. With the parameters introduced above and in Figure 5.26 we have the relations $r=\frac{p}{1+e \cos \varphi}$ and $r=a-e x=a-a e \cos u$ where p is the vertical distance from a focus to the ellipse and x is the directed distance of P from the minor axis of the ellipse (when the ellipse has its major axis horizontal; see Figure 3.4 in Section 3.2. The Ellipse).

Proof. Recall that the sum of the distance of P to the two foci is twice the lengthof the major axis (this is equation (3.5) in Section 3.2. The Ellipse). So the distance BF is equal to a. The lengths $r / e, p / e$, and a / e are given in Figure 3.4 (based on the definition of an ellipse in terms of a directrix and eccentricity), and also given in Figure 5.26.

Theorem 5.9.A

Theorem 5.9.A. With the parameters introduced above and in Figure 5.26 we have the relations $r=\frac{p}{1+e \cos \varphi}$ and $r=a-e x=a-a e \cos u$ where p is the vertical distance from a focus to the ellipse and x is the directed distance of P from the minor axis of the ellipse (when the ellipse has its major axis horizontal; see Figure 3.4 in Section 3.2. The Ellipse).

Proof. Recall that the sum of the distance of P to the two foci is twice the lengthof the major axis (this is equation (3.5) in Section 3.2. The Ellipse). So the distance $B F$ is equal to a. The lengths $r / e, p / e$, and a / e are given in Figure 3.4 (based on the definition of an ellipse in terms of a directrix and eccentricity), and also given in Figure 5.26.

Theorem 5.9.A (continued 1)

Proof (continued).

From Figure 5.26 we see that distance p / e equals distance r / e plus the base of the right triangle with hypotenuse $\overline{F P}$. The base has length $r \cos \varphi$ and so $\frac{p}{e}-r \cos \varphi+\frac{r}{e}$. That is, $p=e r \cos \varphi+r=r(e \cos \varphi+1)$ or $r=\frac{p}{1+e \cos \varphi}$, as claimed .

Theorem 5.9.A (continued 2)

Proof (continued).

Also from Figure 5.26, distance a/e equals distance r / e plus the base of the triangle with hypotenuse $O P^{\prime}$. The base has length $a \cos u$ and so $\frac{a}{e}=\frac{r}{e}+a \cos u$. That is $a=r+e a \cos u$, or $r=a-e a \cos u$, as claimed.
Also, $x=a \cos u$ so we also have $r=a-e x$, as claimed.

Theorem 5.9.B

Theorem 5.9.B. The area \mathcal{A} swept out by the line joining the focus F to a point P on the ellipse over an angle φ measured from the semimajor axis (see Figure 5.27, left) is

$$
\mathcal{A}=\frac{a b}{2}(u-e \sin u)
$$

Proof. We seek the shaded are \mathcal{A} in Figure 5.27 (left).

Theorem 5.9.B

Theorem 5.9.B. The area \mathcal{A} swept out by the line joining the focus F to a point P on the ellipse over an angle φ measured from the semimajor axis (see Figure 5.27, left) is

$$
\mathcal{A}=\frac{a b}{2}(u-e \sin u)
$$

Proof. We seek the shaded are \mathcal{A} in Figure 5.27 (left).

Fig. 5.27. Computation of the area \mathcal{A} swept out by the radius vector
We stretch the ellipse vertically by a factor of a / b (that is, the y-value of each point is multiplied by $a / b)$.

Theorem 5.9.B

Theorem 5.9.B. The area \mathcal{A} swept out by the line joining the focus F to a point P on the ellipse over an angle φ measured from the semimajor axis (see Figure 5.27, left) is

$$
\mathcal{A}=\frac{a b}{2}(u-e \sin u)
$$

Proof. We seek the shaded are \mathcal{A} in Figure 5.27 (left).

Fig. 5.27. Computation of the area \mathcal{A} swept out by the radius vector
We stretch the ellipse vertically by a factor of a / b (that is, the y-value of each point is multiplied by a / b).

Theorem 5.9.B (continued 1)

Proof (continued).

Fig. 5.27. Computation of the area \mathcal{A} swept out by the radius vector
With \mathcal{B} as the shaded area in Figure 5.27 (right) we then have $\mathcal{B}=\frac{a}{b} \mathcal{A}$ (the idea is similar to that of Theorem 1.6, though that does not rigorously justify this claim). The area of the sector in the circle with central angle u measured in radians is $a^{2} u / 2$. With \mathcal{T} as the area of the triangle in Figure 5.27 (right), we have that $a^{2} u / 2$ is then $\mathcal{T}+\mathcal{B}$. Since $\mathcal{T}=\frac{1}{2}(a e)(a \sin u)=\frac{1}{2} a^{2} e \sin u$. Therefore,

$$
\mathcal{B}=\frac{a^{2} u}{2}=\mathcal{T}=\frac{a^{2} u}{2}-\frac{a^{2} e \sin u}{2}=\frac{a^{2}}{2}(u-e \sin u), \ldots
$$

Theorem 5.9.B (continued 2)

Theorem 5.9.B. The area \mathcal{A} swept out by the line joining the focus F to a point P on the ellipse over an angle φ measured from the semimajor axis (see Figure 5.27, left) is

$$
\mathcal{A}=\frac{a b}{2}(u-e \sin u) .
$$

Proof (continued). . .

$$
\mathcal{B}=\frac{a^{2} u}{2}=\mathcal{T}=\frac{a^{2} u}{2}-\frac{a^{2} e \sin u}{2}=\frac{a^{2}}{2}(u-e \sin u),
$$

and hence

$$
\mathcal{A}=\left(\frac{b}{a}\right) \frac{a^{2}}{2}(u-e \sin u)=\frac{a b}{2}(u-e \sin u),
$$

as claimed.

