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Theorem 43.2. An Auxiliary Theorem

Theorem 43.2. An Auxiliary Theorem

Theorem 43.2. An Auxiliary Theorem.
Given two pairs of points z0, z1 and w0,w1 where
|z0 − z1| = |w0 − w1| 6= 0, there is just one mapping of type I+ and just
one of type I− which maps z0 onto w0 and maps z1 onto w1.

Proof. Let az + b ∈ I+ with w0 = az0 + b and w1 = az1 + b. Then
w0 − w1 = (az0 + b)− (az1 + b) = a(z0 − z1) and

a = (w0 − w1)/(z0 − z1)

(this is where we use the facts that z0 − z1 6= 0 and |z0 − z1| = |w0 −w1|),
so that a is uniquely determined in terms of the given w0,w1, z0, z1.

Then

b = w0 − az0 = w0 − z0
w0 − w1

z0 − z1

and b is uniquely determined (also, . . .
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Theorem 43.2. An Auxiliary Theorem

Theorem 43.2 (continued)

Proof (continued).

b = w1 − az1 = w1 − z1
w0 − w1

z0 − z1
=

w1(z0 − z1)− z1(w0 − w1)

z0 − z1

=
w1z0 − z1w0

z0 − z1
=

z0w0 − z0w0 + w1z0 − z1w0

z0 − z1

=
w0(z0 − z1)− z0(w0 − w1)

z0 − z1
= w0 − z0

w0 − w1

z0 − z1
,

as expected).

Similarly, for cz + d ∈ I− with w0 = cz0 + d and w1 = cz1 + d . Then
w0 − w1 = (cz0 + d)− (cz1 + d) = c(z0 − z1) and
c = (w0 − w1)/(z0 − z1) so that c is uniquely determined in terms of the
given w0,w1, z0, z1. Then d = w0 − cz0 = w0 − z0(w0 − w1)/(z0 − z1)
and d is uniquely determined.
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Lemma 43.A

Lemma 43.A

Lemma 43.A. For distance u, v ,w ∈ C we have u, v ,w collinear, with v
between u and w on the line containing the points, if and only if
|v − u|+ |w − v | = |w − u|.

Proof. Suppose u, v ,w are collinear with v between u and w . Say the
points lie on the line Im((z − a)/b) = 0. The line segment joining u and w
is {z | z = u(1− t) + tw , t ∈ [0, 1]}; notice for such z we have

Im

(
z − a

b

)
= Im

(
(u(1− t) + tw)− a

b

)
= Im

(
u(1− t) + tw − (1− t)a− ta

b

)
= Im

(
(1− t)(u − a)

b
+

t(w − a)

b

)
= (1− t)Im

(
u − a

b

)
+ tIm

(
w − a

b

)
= 0 . . .
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Lemma 43.A

Lemma 43.A (continued 1)

Proof (continued). since u and w are on the line. Since v is between u
and w on the line then for some t ′ ∈ (0, 1) we have v = u(1− t ′) + t ′w .
So v − u = u(1− t ′) + t ′w − u = t ′(w − u) and
m − v = w − (u(1− t ′) + t ′w) = (1− t ′)(w − u), and hence

|v − u|+ |w − v | = |t ′(w − u)|+ |(1− t ′)(w − u)|

= t ′|w − u|+ (1− t ′)|w − u| = |w − u|,

ad claimed.

Now suppose |v − u|+ |w − v | = w − u|. By the Triangle Inequality, this
means v − u = t ′′(w − v) for some t ′′ ∈ R and t ′′ > 0 (notice t ′′ 6= 0 since

u, v ,w are distinct). Then t ′′ =
v − u

w − v
=

u − v

v − w
and so

Im

(
u − v

v − w

)
= Im(t ′′) = 0. Consider the line in C Im

(
z − v

v − w

)
= 0 (the

line through v with “direction vector” v − w).
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Lemma 43.A

Lemma 43.A (continued 2)

Lemma 43.A. For distance u, v ,w ∈ C we have u, v ,w collinear, with v
between u and w on the line containing the points, if and only if
|v − u|+ |w − v | = |w − u|.

Proof (continued). Of course Im

(
w − v

v − w

)
= Im(−1) = 0, so u, v , and

w are each on this line and u, v ,w are collinear, as claimed. Finally, since

v − u = t ′′(w − v) then (1 + t ′′)v = u + t ′′w or v =
1

1 + t ′′
u +

t ′′

1 + t ′′
w .

As shown above, the line segment joining u and w is
{z | z = (1− t)u + tw , t ∈ [0, 1]}, so with t = t ′′/(1 + t ′′) ∈ (0, 1) and
1− t = 1/(1 + t ′′) we see that v is between u and w on this line segment
and hence on the line of collinearity of u, v , and w , as claimed.
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Theorem 43.3. Isometries are Collineations

Theorem 43.3. Isometries are Collineations

Theorem 43.3. Isometries are Collineations.
Every isometry of the Gauss plane C is a collineation.

Proof. Let z 7→ z ′ be an isometry. Let ` be any line in the Gauss plane C
Choose three points u, v ,w on ` with v between u and w on `. Then by
Lemma 43.A, |v − u|+ |w − v | = |w − u|. Since the mapping z 7→ z ′ is an
isometry (and we measure distance in C using modulus of differences)
then |v ′ − u′|+ |w ′ − v ′| = |w ′ − u′|.

Also by Lemma 43.A, u′, v ′,w ′ are
collinear (say they lie on line `′) with v ′ between u′ and w ′ on the line.
That is, the isometry maps line ` to line `′. Since ` is an arbitrary line in
C, then the result follows.
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Theorem 43.4. Isometries and Parallel Lines

Theorem 43.4. Isometries and Parallel Lines

Theorem 43.4. Isometries and Parallel Lines.
An isometry of the Gauss plane C maps parallel lines onto parallel lines.

Proof. If P is a point in C and ` is a line that does not contain P, the
minimum distance of P from line ` is well defined (in fact, you could find
the point on ` which is the minimum distance from P using Calculus 1),
and given by PR where R is the intersection of the perpendicular to `
through P with line `.
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Theorem 43.4. Isometries and Parallel Lines

Theorem 43.4 (continued 1)

Proof. We can establish this using Euclid by noticing that any other point
T on line ` produces a right triangle PRT and by the Pythagorean
Theorem (Euclid Book I, Proposition 47), say, PR is smaller than the
hypotenuse PT . Under an isometry, line ` containing point P is mapped
to some line `′ containing P ′ (by Theorem 43.3), and line PR is mapped
to line P ′R ′. Since the mapping is an isometry, then the minimum
distance from line `′ to point P ′ is given by P ′R ′ so that line P ′R ′ is
perpendicular to line `′ (this shows that isometries map perpendicular lines
to perpendicular lines).

Given two parallel lines ` and m, take two points P and Q on m and let
points R and S be the intersections of perpendicular to ` through these
points (respectively) with line `. Since parallel lines are equidistant from
each other then we have the equality PR = QS of distances.
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Theorem 43.4. Isometries and Parallel Lines

Theorem 43.4 (continued 2)

Proof.

With lines `′ and m′ as the images of lines ` and m respectively and with
points P ′,Q ′,R ′,S ′ as the images of points P,Q,R,S , respectively, we
have that lines P ′R ′ and Q ′R ′ are both perpendicular to line `′ as argued
above. Also, since the mapping is an isometry, we have the equality of
distances P ′R ′ = Q ′S ′. So lines `′ and m′ are equidistant from each other
and hence are parallel (since the distance is greater than 0 then the lines
do not intersect; that is, they are parallel). Since parallel lines ` and m are
arbitrary, the claim follows.
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Lemma 43.B

Lemma 43.B

Lemma 43.B. If three circles with different centers intersect in two points
then the centers of the circles must be collinear.

Proof. Let the circles be Ci with centers zi (respectively) for i = 0, 1, 2.
Suppose the distinct points z and w lie on all three circles. Consider the
line segment zw .

If zw is a diameter of one of the circles then construct
the line ` perpendicular to zw and passing through the center of that
circle (we use Euclid’s Book I, Proposition 11: “To draw a straight line at
right angles to a given straight line from a given point on it.”). Otherwise,
let v be the midpoint of zw (we use Book I, Proposition 10: “To bisect a
given finite straight line.”) and construct the line ` through v and the
center of one of the circles. Euclid’s Book III, Proposition 3 state: “If a
straight line passing through the center of a circle bisects a straight line
not passing through the center, then it also cuts it at right angles; and if it
cuts it at right angles, then it also bisects it.” By Book III, Proposition 3,
line ` is perpendicular to segment zw .
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Lemma 43.B

Lemma 43.B (continued)

Lemma 43.B. If three circles with different centers intersect in two points
then the centers of the circles must be collinear.

Proof (continued). Euclid’s Book III, Corollary to Proposition 1 state:
“If in a circle a straight line cuts a straight line into two equal parts and at
right angles, then the center of the circle lies on the cutting straight line.”
Now the other two circles also both contain points z and w so by Book III,
Corollary to Proposition 1, since ` bisects segment zw and is perpendicular
to it, the ` contains the center of the other two cycles as well, as
claimed.
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Theorem 43.5. Determination of an Isometry.
An isometry of the Gauss plane C is uniquely determined by the
assignment of the congruent maps of a given triangle. That is, if z0, z1, z2

are noncollinear points with respective images w0,w1,w2 then for any z in
the plane, the image of z is uniquely determined from w0,w1,w2.

Proof. Let z0, z1, z2 be noncollinear points in the Gauss plane C. By
Lemma 43.A we have: |z0 − z1|+ |z1 − z2| < |z0 − z2|,
|z0 − z1|+ |z0 − z2| < |z1 − z2|, and |z0 − z2|+ |z1 − z2| < |z0 − z1| since
the points are noncollinear and equality in any one of these three would
imply linearity of the three points. Now |z0 − z2| = |w0 − w1|,
|z1 − z2| = |w1 −w2|, and |z0 − z2| = |w0 −w2| since we have an isometry.
So |w0 − w1|+ |w1 − w2| < |w0 − w2|, |w0 − w1|+ |w0 − w2| < |w1 − w2|,
and |w0 − w2|+ |w1 − w2| < |w0 − w1| and the points w0,w1,w2 are not
collinear.
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Theorem 43.5. Determination of an Isometry

Theorem 43.5 (continued)

Proof (continued). Let z be a point C other than z0, z1, z2. Consider the
circles Ci with (respective) centers zi and radius |z − zi | for i = 0, 1, 2.
Then the three circles intersect at point z . Since the centers are not
collinear, then by Lemma 43.B z is the only point on the three circles.
That is, point z is uniquely determined by the three distances |z − z0|,
|z − z1|, and |z − z2|. Now triangle w0w1w2 is congruent to triangle z0z1z2

and similarly there is a unique point on the intersection of the three circles
C ′

i centered at wi with radii |z − zi | for i = 0, 1, 2; denote the unique point
as w . Since the mapping is an isometry then we must have w as the
image of z . Since z is an arbitrary point in C (distinct from z0, z1, z2) then
the isometry on C is uniquely determined.
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Theorem 43.6

Theorem 43.6

Theorem 43.6. There are precisely two isometries of the Gauss plane
which map two given points z0 and z1 into two given points w0 and w1

(respectively) where |z0 − z1| = |w0 − w1| 6= 0.

Proof. Theorem 43.2 gives two such isometries, one in I+ and one in I−.
We now show that these are the only such isometries. Let z be a point in
C that is not collinear with z0 and z1. Consider circle C0 centered at z0

with radius |z − z0| and circle C1 centered at z1 with radius |z − z1|. Since
z lies on both C0 and C1 and z is not collinear with the centers of z0 and
z1 then these circles intersect at two points.

Similarly, circle C ′
0 centered

at w0 with radius |z − z0| and circle C ′
1 centered at w1 with radius |z − z1|

intersect in two points. Since the mapping is an isometry, then z must be
mapped to either one or the other of the two points on circles C ′

0 and C ′
1.

So there are at most two such isometries, and the result follows.
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Theorem 43.1. The Main Theorem on Isometries of the Gauss
Plane
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Theorem 43.1. The Main Theorem on Isometries of the Gauss
Plane.
The set I of all isometries of the Gauss plane C (onto itself) is composed
of two classes I+ and I−. The class I+ consists of all isometries of the
form z ′ = az + b where |a| = 1, and the class I− of all isometries of the
form z ′ = cz + d where |c | = 1.

Proof. Consider a given isometry of the Gauss plane C. Let z0 and z1 be
any distinct points in C with images w0 and w1, respectively, under the
isometry. By Theorem 43.2, there are two possibilities for the isometry, one
in I+ and one in I−.

By Theorem 43.6, there are only two possibilities
for the isometry. So the isometry must be in either I+ or I− and hence
every isometry of C is contained in either I+ or I−, as claimed.
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