
Real Analysis

March 1, 2019

Chapter V. Mappings of the Euclidean Plane
44. Algebra and Groups—Proofs of Theorems

() Real Analysis March 1, 2019 1 / 7



Table of contents

1 Theorem 44.2. Conditions for a Subgroup

2 Theorem 44.4. The Identity of Cosets

3 Corollary 44.4

4 Theorem 44.5. Right and Left Cosets

5 Theorem 44.A. Lagrange’s Theorem

() Real Analysis March 1, 2019 2 / 7



Theorem 44.2. Conditions for a Subgroup

Theorem 44.2. Conditions for a Subgroup

Theorem 44.2. Conditions for a Subgroup.
A nonempty subset H of a group G is a subgroup of G if and only if for
every a, b ∈ H we have (i) b−1, ab ∈ H, or (ii) ab−1 ∈ H.

Proof. First, if H is a subgroup and a, b ∈ H then, since H itself is a
group, b−1 ∈ H by the Inverse Law, and so by closure under the binary
operation, ab, ab−1 ∈ H.

Second, suppose for all a, b ∈ H that (ii) holds and so ab−1 ∈ H. Then for
all a ∈ H (with b = a) we have aa−1 = i ∈ H so H satisfies The Identity
Law. So for all b ∈ H (with a = i) we have ib−1 = b−1 ∈ H and so H
satisfies The Inverse Law. The Associative Law is satisfies on G and so is
satisfies on a subset of G . Therefore, (ii) implies that H is a subgroup of
G . Next, suppose (i) holds and that for a, b ∈ H we have b−1, ab ∈ H. So
both b, b−1 ∈ H and hence ab−1 ∈ H and (i) implies (ii). Since (ii) implies
that H is a subgroup of G , then (i) implies that H is a subgroup of G .
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Theorem 44.4. The Identity of Cosets.
If Ha and Hb have one element in common then they coincide (that is,
they are equal).

Proof. Let c ∈ Ha ∩ Hb. Then c = ha = kb for some h, k ∈ H. From
ha = kb we have h−1k = ab−1 ∈ H. We know h−1k ∈ H since H is a
group and since ha = kb then h−1k = ab−1 ∈ H. Also,
a = (h−1k)b ∈ Hb. So for any h′a ∈ Ha we have h′a = h′(h−1k)b ∈ Hb so
that Ha ⊂ Hb.

Similarly, b = (k−1h)a ∈ Ha and for any k ′b ∈ Hb we have
k ′(k−1h)a ∈ Ha so that Hb ⊂ Ha. So Ha = Hb, as claimed.
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Corollary 44.4

Corollary 44.4. Elements a, b ∈ G lie in the same right coset of H if and
only if ab−1 ∈ H.

Proof. Let g ∈ G and H a subgroup of G . Since the identity i ∈ H then
g ∈ Hg so that every element of G lies in some right coset. (Notice that
this, combined with Theorem 44.4, implies that the cosets of H partition
G .) Suppose a and b lie in the same right coset of H. Since a ∈ Ha and
b ∈ Gb then we have Ha = Hb and, as shown in the proof of Theorem
44.4, ab−1 ∈ H, as claimed.

On the other hand, if ab−1 ∈ H, say ab−1 = h ∈ H, then a = hb ∈ Hb so
that a is in both Ha and Hb. By Theorem 44.4, Ha = Hb and so a and b
lie in the same right coset.
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Theorem 44.5. Right and Left Cosets.
If the number of right cosets with respect to a subgroup H is finite, then
there is an equal number of left cosets, and conversely.

Proof. If h ∈ H then (ah)−1 = h−1a−1. Since H is a group, as h−1 “runs
through” all the elements of H, then h correspondingly “runs through” all
elements of H (that is, h ∈ H if and only if h−1 ∈ H). So
{h−1a−1 | h−1 ∈ H} = {ha−1 | h ∈ H} = Ha−1. Hence we can associate
each left coset aH with the right coset Ha−1.

This association is onto
(since any right coset Hb is the image of b−1H under this association). By
Corollary 44.4, Ha−1 = Hb−1 if and only if (a−1)(b−1)−1 = a−1b ∈ H,
and so (a−1b)−1 = b−1a ∈ H. By Note 44.A, this implies the left cosets
aH and bH are equal and so the association is one to one. Therefore, the
mapping of left cosets to right cosets given by aH → Ha (for all a ∈ G ) is
a bijection (or a “one-to-one correspondence”) and so the number of left
cosets equals the number of right cosets.
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Theorem 44.A. Lagrange’s Theorem.
If G is a finite group and H is a subgroup of G then the order of H divides
the order of G .

Proof. By Exercise 44.2, all right cosets of H are of the order of H. The
index [G : H] is the number of right cosets of H. By Note 44.B, the cosets
of H in G partition G . So |G | = [G : H]|H|. So the order of H divides the
order of G (namely, [G : H] times).
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