Real Analysis

Chapter V. Mappings of the Euclidean Plane

45. Conjugate and Normal Subgroups—Proofs of Theorems

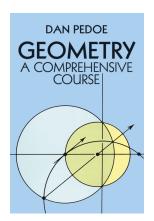


Table of contents

- 1 Theorem 45.1
- 2 Theorem 45.2. A Classification of Normal Subgroups
- 3 Theorem 45.3. Subgroups of Index Two
- 4 Theorem 45.5

Theorem 45.1. If H is a subgroup of G and $g \in G$ then the set of elements $K = g^{-1}Hg$ is a subgroup of G.

Proof. If $h, k \in H$ then $g^{-1}kg, g^{-1}kg \in K$ and to show that K is a subgroup of G, by Theorem 44.2 (since ^{-1}kg and $g^{-1}hg$ are arbitrary elements of K) it is sufficient to show that $(g^{-1}kg)(g^{-1}hg)^{-1} \in K$. Now

$$(g^{-1}kg)(g^{-1}hg)^{-1} = g^{-1}kgg^{-1}h^{-1}g = g^{-1}kh^{-1}g \in K$$

since $kh^{-1} \in H$ because H is a group. So K is a subgroup of G, as claimed.

Theorem 45.1. If H is a subgroup of G and $g \in G$ then the set of elements $K = g^{-1}Hg$ is a subgroup of G.

Proof. If $h, k \in H$ then $g^{-1}kg, g^{-1}kg \in K$ and to show that K is a subgroup of G, by Theorem 44.2 (since ^{-1}kg and $g^{-1}hg$ are arbitrary elements of K) it is sufficient to show that $(g^{-1}kg)(g^{-1}hg)^{-1} \in K$. Now

$$(g^{-1}kg)(g^{-1}hg)^{-1} = g^{-1}kgg^{-1}h^{-1}g = g^{-1}kh^{-1}g \in K$$

since $kh^{-1} \in H$ because H is a group. So K is a subgroup of G, as claimed.

nalysis March 2, 2019

Theorem 45.2. A Classification of Normal Subgroups

Theorem 45.2. A Classification of Normal Subgroups.

H is a normal subgroup of G if and only if $h \in H$ implies $g^{-1}hg \in H$ for all $g \in G$.

Proof. Suppose $g^{-1}hg \in H$ for all $h \in H$ and for all $g \in G$. Then $g^{-1}Hg \subset H$ for all $g \in G$. Since $g^{-1} \in G$ we also have $(g^{-1})^{-1}Hg^{-1} = gHg^{-1} \subset H$ or $H \subset g^{-1}Hg$. Therefore $H = g^{-1}Hg$ and so (by definition) H is a normal subgroup of G.

Real Analysis March 2, 2019 4 / 6

Theorem 45.2. A Classification of Normal Subgroups

Theorem 45.2. A Classification of Normal Subgroups.

H is a normal subgroup of G if and only if $h \in H$ implies $g^{-1}hg \in H$ for all $g \in G$.

Proof. Suppose $g^{-1}hg \in H$ for all $h \in H$ and for all $g \in G$. Then $g^{-1}Hg \subset H$ for all $g \in G$. Since $g^{-1} \in G$ we also have $(g^{-1})^{-1}Hg^{-1} = gHg^{-1} \subset H$ or $H \subset g^{-1}Hg$. Therefore $H = g^{-1}Hg$ and so (by definition) H is a normal subgroup of G.

Suppose H is a normal subgroup of G. Then, by definition, $H = g^{-1}Hg$ for all $g \in G$, so for any $h \in H$ we have $g^{-1}hg \in H$, as claimed.

Real Analysis March 2, 2019

Theorem 45.2. A Classification of Normal Subgroups

Theorem 45.2. A Classification of Normal Subgroups.

H is a normal subgroup of G if and only if $h \in H$ implies $g^{-1}hg \in H$ for all $g \in G$.

Proof. Suppose $g^{-1}hg \in H$ for all $h \in H$ and for all $g \in G$. Then $g^{-1}Hg \subset H$ for all $g \in G$. Since $g^{-1} \in G$ we also have $(g^{-1})^{-1}Hg^{-1} = gHg^{-1} \subset H$ or $H \subset g^{-1}Hg$. Therefore $H = g^{-1}Hg$ and so (by definition) H is a normal subgroup of G.

Suppose H is a normal subgroup of G. Then, by definition, $H = g^{-1}Hg$ for all $g \in G$, so for any $h \in H$ we have $g^{-1}hg \in H$, as claimed.

Real Analysis March 2, 2019

Theorem 45.3. Subgroups of Index Two

Theorem 45.3. Subgroups of Index Two.

A subgroup H of index two in G is always normal.

Proof. We use Note 45.A (based on Theorem 45.2). For any $h \in H$ we have hH = Hh = H (or $h^{-1}Hh = H$). If $g \in G$ and $g \notin H$ then the right coset Hg contains g and so $Hg \neq H$ so Hg must be the other right coset of H (namely, $G \setminus H$).

Theorem 45.3. Subgroups of Index Two

Theorem 45.3. Subgroups of Index Two.

A subgroup H of index two in G is always normal.

Proof. We use Note 45.A (based on Theorem 45.2). For any $h \in H$ we have hH = Hh = H (or $h^{-1}Hh = H$). If $g \in G$ and $g \notin H$ then the right coset Hg contains g and so $Hg \neq H$ so Hg must be the other right coset of H (namely, $G \setminus H$). Similarly, the left coset of H contains Hg and so $Hg \neq Hg$ for all Hg for all Hg for Hg (or Hg). So both cosets of Hg are self conjugate and hence Hg is a normal subgroup of Hg, as claimed.

Theorem 45.3. Subgroups of Index Two

Theorem 45.3. Subgroups of Index Two.

A subgroup H of index two in G is always normal.

Proof. We use Note 45.A (based on Theorem 45.2). For any $h \in H$ we have hH = Hh = H (or $h^{-1}Hh = H$). If $g \in G$ and $g \notin H$ then the right coset Hg contains g and so $Hg \neq H$ so Hg must be the other right coset of H (namely, $G \setminus H$). Similarly, the left coset of H contains Hg and so $Hg \neq H$ so Hg must be the other left coset of Hg (namely, Hg). Hence Hg for all $Hg \in G \setminus Hg$ (or Hg = Hg). So both cosets of Hg are self conjugate and hence Hg is a normal subgroup of Hg, as claimed.

Theorem 45.5. The mapping $\alpha: G \to G$ defined as $\alpha: x' = g^{-1}xg$ where $g \in G$ is fixed, and $x \in G$, is an automorphism of G.

Proof. Since $\alpha(x) = g^{-1}xg$, then for any $h \in G$ we have $x = ghg^{-1} \in G$ and $\alpha(x) = \alpha(ghg^{-1}) = g^{-1}(ghg^{-1})g = h$ and so α is onto. If $\alpha(x) = \alpha(y)$ then $g^{-1}xg = g^{-1}yg$ and so x = y. That is, α if one to one. So α is a bijection.

Theorem 45.5. The mapping $\alpha: G \to G$ defined as $\alpha: x' = g^{-1}xg$ where $g \in G$ is fixed, and $x \in G$, is an automorphism of G.

Proof. Since $\alpha(x) = g^{-1}xg$, then for any $h \in G$ we have $x = ghg^{-1} \in G$ and $\alpha(x) = \alpha(ghg^{-1}) = g^{-1}(ghg^{-1})g = h$ and so α is onto. If $\alpha(x) = \alpha(y)$ then $g^{-1}xg = g^{-1}yg$ and so x = y. That is, α if one to one. So α is a bijection.

Finally, for all $a, b \in G$,

$$\alpha(ab) = g^{-1}(ab)g = g^{-1}agg^{-1}bg = (g^{-1}ag)(g^{-1}bg) = \alpha(a)\alpha(b).$$

So α is an isomorphism and an automorphism of G, as claimed.

Theorem 45.5. The mapping $\alpha: G \to G$ defined as $\alpha: x' = g^{-1}xg$ where $g \in G$ is fixed, and $x \in G$, is an automorphism of G.

Proof. Since $\alpha(x) = g^{-1}xg$, then for any $h \in G$ we have $x = ghg^{-1} \in G$ and $\alpha(x) = \alpha(ghg^{-1}) = g^{-1}(ghg^{-1})g = h$ and so α is onto. If $\alpha(x) = \alpha(y)$ then $g^{-1}xg = g^{-1}yg$ and so x = y. That is, α if one to one. So α is a bijection.

Finally, for all $a, b \in G$,

$$\alpha(ab) = g^{-1}(ab)g = g^{-1}agg^{-1}bg = (g^{-1}ag)(g^{-1}bg) = \alpha(a)\alpha(b).$$

So α is an isomorphism and an automorphism of G, as claimed.

