Real Analysis

Chapter V. Mappings of the Euclidean Plane

46. Groups of Mappings—Proofs of Theorems

March 7, 2019 1 /

Theorem 46.

Theorem 46.1 (continued)

Theorem 46.1. The translation of the Gauss plane $\mathbb C$ form an Abelian group $\mathscr T$ which is isomorphic to the additive group of complex numbers. The group operation on $\mathscr T$ is composition of mappings.

Proof (continued). To prove the isomorphism, map $T_b \in \mathscr{T}$ to $b \in \mathbb{C}$. The mapping is "clearly" one to one and onto. For $T_b, T_c \in \mathscr{T}$, the mapping sends $T_b \circ T_c$ to b+c (since $T_b \circ T_c : z+(b+c)$), so the mapping is an isomorphism, as claimed.

Theorem 46.1

Theorem 46.1

Theorem 46.1. The translation of the Gauss plane $\mathbb C$ form an Abelian group $\mathscr T$ which is isomorphic to the additive group of complex numbers. The group operation on $\mathscr T$ is composition of mappings.

Proof. Let $t_b: z'=z+b$, $T_c: z'=z+c$, and $T_d: z'=z+d$ be translations. Then $t_b\circ T_c: z'=(z+b)+c=z+(c+b)$ and so composition actually is a binary operation on \mathscr{T} . Also $T_c\circ T_c: z'=(z+b)+c=z+(b+c)$, so $T_b\circ T_c=T_b\circ T_c$ and the binary operation is commutative. Now function composition is associative in general, and we have here specifically

 $T_b \circ (T_c \circ T_d) : z' = (z + (d+c)) + b = z + (d+c+b)$ and $(T_b \circ T_c) \circ T_d : z' = (z+d) + (c+b) = z + (d+c+b)$ so that $T_b \circ (T_c \circ T_d) = (T_b \circ T_c) \circ T_d$ and The Associative Law holds. The identity is $T_0 : z' = z + 0 = z$ and the inverse of $T_b : z' = z + b$ is $(T_b)^{-1} = T_{-b} : z' = z - b$, so that The Law of Identity and The Law of Inverse hold. So $\mathscr T$ is a group with a commutative binary operation. That is, $\mathscr T$ is an Abelian group, as claimed.

Theorem 46.2. The Group of Dilative Rotations

Proof. For every non-zero $a \in \mathbb{C}$, define $D_a : z' = az$. First,

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane $\mathbb C$ about the origin (of the form z'=az) form an Abelian group $\mathscr D$ (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

 $D_a \circ D_b : z' = a(bz) = (ab)z$ so composition really is a binary operation on \mathscr{D} . Also, $D_b \circ D_a : z' = b(az) = (ba)z = (ab)z$ so that the binary operation is commutative. The identity is $D_1 : z' = z$ and The Identity Law holds. The inverse of D_a is $D_{z^{-1}}$ since $D_a \circ D_{a^{-1}} : z' = a(a^{-1}z) = (aa^{-1})z = z$ and The Inverse Law holds. Finally, $D_a \circ (D_b \circ D_c) : z' = a(bcz) = (abc)z$ and $(D_a \circ (D_b \circ D_c) : z' = (ab)(cz) = (abc)z$ so $D_a \circ (D_b \circ D_c) = (D_a \circ D_b) \circ D_c$ so that The Associative Law holds and so \mathscr{D} is an Abelian group.

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z'=az) form an Abelian group \mathcal{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof (continued). If we map $D_a \mapsto z$ then the mapping is "clearly" a bijection between \mathcal{D} and $\mathbb{C} \setminus \{0\}$. Since $D_1 \circ D_b : z' = (ab)z$ and $D_{ab}: z'=(ab)z$ then the mapping of $D_z\circ D_b$ is the same as the mapping of $D_a \circ D_b$ is the same as the mapping of D_{ab} (since both are mapped to ab). Therefore the map is an isomorphism between \mathscr{D} and $\mathbb{C}\setminus\{0\}$ under multiplication, as claimed.

March 7, 2019

where |a|=1) form a subgroup \mathcal{R}_0 of \mathcal{D} . Both \mathcal{D}^* and \mathcal{R}_0 are Abelian. **Proof.** For central dilations, consider D_a and $(D_b)^{-1}$ in \mathcal{D}^* . We see in the

The central dilations (of the form z'=az where $a\in\mathbb{R}$ and $a\neq 0$) form a

subgroup \mathcal{D}^* of \mathcal{D} . The rotations about the origin (of the form z'=az

proof of Theorem 46.2 that $D_b^{-1} = D_{b^{-1}}$ and so $D_a \circ (D_b)^{-1} = D_a \circ D_{b^{-1}} : z' = a(b^{-1}z) = (ab^{-1})z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $ab^{-1} \in \mathbb{R}$ and so $D_a \circ (D_b)^{-1} = D_{ab^{-1}} \in \mathscr{D}^*$ and by Theorem 44.2, \mathcal{D}^* is a subgroup of \mathcal{D} .

For rotations about the origin, consider D_a and $(D_b)^{-1}$ in \mathcal{R}_0 (so that |a|=|b|=1). Then, as above, $D_a\circ (D_b)^{-1}=D_{ab^{-1}}$ and since $|ab^{-1}| = |a||b^{-1}| = 1$ then $D_a \circ (D_b)^{-1} \in \mathcal{R}_0$ and by Theorem 44.2, \mathcal{R}_0 is a subgroup of \mathcal{D} .

Since \mathscr{D} is Abelian then \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Proof. Let $l_1: z' = az + b$. $l_2: z' = cz + d$. $l_3: z' = a'\overline{z} + b'$. and $I_4: z' = c'\overline{z} + d'$ where |a| = |c| = |a'| = |c'| = 1. Then

$$I_1 \circ I_2 : z' = a(cz+d) + b = (ac)z + (ad+b)$$

 $I_1 \circ I_3 : z' = a(a'\overline{z}+b') + b = (aa')\overline{z} + (ab'+b)$

$$I_3 \circ I_1 : z' = a' \overline{(az+b)} + b' = (a'\overline{a})\overline{z} + (a'\overline{b} + b')$$

$$I_3 \circ I_4 : z' = a' \overline{(c'\overline{z} + d')} + b' = (a'\overline{c'})z + (a'\overline{d'} + b')$$

and since |ac| = |a||c| = 1, |aa'| = |a||a'| = 1, $|a'\overline{a}| = |a'||\overline{a}| = 1$, and $|a\overline{c'}| = |a'||\overline{c'}| = |a||c'| = 1$ we have each of these compositions in \mathscr{I} (and these are all possible types of compositions of elements of \mathscr{I}), ...

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I} . As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $I_1: z' = az + b$ is $I_1^{-1}: z' = a^{-1}z - a^{-1}b$ and the inverse of $I_3: z' = a'\overline{z} + b'$ is $I_3^{-1}: \overline{(a')^{-1}}\overline{z} - \overline{(a')^{-1}}\overline{b'}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed.

Notice that $I_1 \circ I_2 \in \mathscr{I}_+$ and $I_1^{-1} \in \mathscr{I}_+$ so for any $I_1, I_2 \in \mathscr{I}_+$ we must have $I_1 \circ I_2^{-1} \in \mathscr{I}_+$ and so by Theorem 44.4, \mathscr{I}_+ is a subgroup of \mathscr{I} and so is a group, as claimed.

We now show \mathscr{I}_{-} is a left coset of \mathscr{I}_{+} . Let $a'\overline{z} + b' \in \mathscr{I}_{-}$ where |a'| = 1. Then $\overline{a'}z + \overline{b'} \in \mathscr{I}_+$, $I^*: z' = \overline{z} \in \mathscr{I}_-$, and left coset $I^*\mathscr{I}_+$ includes $I^* \circ (\overline{a'}z + \overline{b'}) = (\overline{a'}z + \overline{b'}) = a'\overline{z} + b'$. Since $a'\overline{z} + b'$ is an arbitrary element of \mathscr{I}_{-} then $\mathscr{I}_{-} \subset I^{*}\mathscr{I}_{+}$. Since the cosets of \mathscr{I}_{+} partition \mathscr{I}_{+} then $\mathscr{I}_{-} = \mathscr{I} \setminus \mathscr{I}_{+}$ is a left coset of \mathscr{I}_{+} and so \mathscr{I}_{+} only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{I}_+ is a normal subgroup of \mathcal{I} , as claimed.

П

Theorem 46.4 (continued 2)

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane $\mathbb C$ form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Proof. To establish the non-Abelian claim, notice that $I_5: z'=iz$ and $I_6: z'=z+1$ are in $\mathscr{I}_+\subset \mathscr{I}$ but $I_5\circ I_6: z'=iz+i$ and $I_6\circ I_5: z'=iz+1$, so $I_5\circ I_6\neq I_6\circ I_5$ and \mathscr{I}_+ , and hence \mathscr{I} , are non Abelian, as claimed.

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B'C' a triangle where I(A) = A', I(B) = B', and I(C) = C' for some direct isometry $I \in \mathscr{I}_+$. If $I_1 \in \mathscr{I}$ is any isometry of the Gauss plane $\mathbb C$ then the triangles with vertices $I_1(A), I_1(B), T_1(C)$ and vertices $I_1(A'), I_1(B'), I_1(C')$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_+$ such that $J(I_1(A)) = I_1(A'), J(I_1(B)) = I_1(B'),$ and $J(I_1(C)) = I_1(C')$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_1^{-1} \in \mathscr{I}$. Let $J = I_1 \circ I \circ I_1^{-1}$. Then $J(I_1(A)) = I_1 \circ I \circ I_1^{-1}(I_1(A)) = I_1 \circ I(A) = I_1(A')$, $J(I_1(B)) = I_1 \circ I \circ I_1^{-1}(I_1(B)) = I_1 \circ I(A) = I_1(B')$, and $J(I_1(C)) = I_1 \circ I \circ I_1^{-1}(I_1(C)) = I_1 \circ I(C) = I_1(C')$. So J has the desired mapping property and, since \mathscr{I}_+ is a normal subgroup of \mathscr{I} by Theorem 46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I_1^{-1} here) $J \in \mathscr{I}_+$ is the desired direct isometry.

() Real Analysis March 7, 2019 10 / 11 () Real Analysis March 7, 2019 11 / 11