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Theorem 46.1

Theorem 46.1

Theorem 46.1. The translation of the Gauss plane C form an Abelian
group T which is isomorphic to the additive group of complex numbers.
The group operation on T is composition of mappings.

Proof. Let tb : z ′ = z + b, Tc : z ′ = z + c , and Td : z ′ = z + d be
translations. Then tb ◦ Tc : z ′ = (z + b) + c = z + (c + b) and so
composition actually is a binary operation on T . Also
Tc ◦ Tc : z ′ = (z + b) + c = z + (b + c), so Tb ◦ Tc = Tb ◦ Tc and the
binary operation is commutative.

Now function composition is associative
in general, and we have here specifically
Tb ◦ (Tc ◦ Td) : z ′ = (z + (d + c)) + b = z + (d + c + b) and
(Tb ◦ Tc) ◦ Td : z ′ = (z + d) + (c + b) = z + (d + c + b) so that
Tb ◦ (Tc ◦ Td) = (Tb ◦ Tc) ◦ Td and The Associative Law holds. The
identity is T0 : z ′ = z + 0 = z and the inverse of Tb : z ′ = z + b is
(Tb)

−1 = T−b : z ′ = z − b, so that The Law of Identity and The Law of
Inverse hold. So T is a group with a commutative binary operation. That
is, T is an Abelian group, as claimed.
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Theorem 46.1

Theorem 46.1 (continued)

Theorem 46.1. The translation of the Gauss plane C form an Abelian
group T which is isomorphic to the additive group of complex numbers.
The group operation on T is composition of mappings.

Proof (continued). To prove the isomorphism, map Tb ∈ T to b ∈ C.
The mapping is “clearly” one to one and onto. For Tb,Tc ∈ T , the
mapping sends Tb ◦ Tc to b + c (since Tb ◦ Tc : z + (b + c)), so the
mapping is an isomorphism, as claimed.
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Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.
The dilative rotations of the Gauss plane C about the origin (of the form
z ′ = az) form an Abelian group D (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.

Proof. For every non-zero a ∈ C, define Da : z ′ = az . First,
Da ◦ Db : z ′ = a(bz) = (ab)z so composition really is a binary operation
on D . Also, Db ◦ Da : z ′ = b(az) = (ba)z = (ab)z so that the binary
operation is commutative.

The identity is D1 : z ′ = z and The Identity
Law holds. The inverse of Da is Dz−1 since
Da ◦ Da−1 : z ′ = a(a−1z) = (aa−1)z = z and The Inverse Law holds.
Finally, Da ◦ (Db ◦ Dc) : z ′ = a(bcz) = (abc)z and
(Da ◦ (Db ◦ Dc) : z ′ = (ab)(cz) = (abc)z so
Da ◦ (Db ◦Dc) = (Da ◦Db) ◦Dc so that The Associative Law holds and so
D is an Abelian group.
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Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2 (continued)

Theorem 46.2. The Group of Dilative Rotations.
The dilative rotations of the Gauss plane C about the origin (of the form
z ′ = az) form an Abelian group D (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.

Proof (continued). If we map Da 7→ z then the mapping is “clearly” a
bijection between D and C \ {0}. Since D1 ◦ Db : z ′ = (ab)z and
Dab : z ′ = (ab)z then the mapping of Dz ◦ Db is the same as the mapping
of Da ◦ Db is the same as the mapping of Dab (since both are mapped to
ab). Therefore the map is an isomorphism between D and C \ {0} under
multiplication, as claimed.
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Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form z ′ = az where a ∈ R and a 6= 0) form a
subgroup D∗ of D . The rotations about the origin (of the form z ′ = az
where |a| = 1) form a subgroup R0 of D . Both D∗ and R0 are Abelian.

Proof. For central dilations, consider Da and (Db)
−1 in D∗. We see in the

proof of Theorem 46.2 that D−1
b = Db−1 and so

Da ◦ (Db)
−1 = Da ◦ Db−1 : z ′ = a(b−1z) = (ab−1)z . Since a, b ∈ R (and

are non-zero) then ab−1 ∈ R and so Da ◦ (Db)
−1 = Dab−1 ∈ D∗ and by

Theorem 44.2, D∗ is a subgroup of D .

For rotations about the origin, consider Da and (Db)
−1 in R0 (so that

|a| = |b| = 1). Then, as above, Da ◦ (Db)
−1 = Dab−1 and since

|ab−1| = |a||b−1| = 1 then Da ◦ (Db)
−1 ∈ R0 and by Theorem 44.2, R0 is

a subgroup of D .

Since D is Abelian then D∗ and R0 are Abelian.
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Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.
The set I of isometries of the Gauss plane C form a group, with the
subset I+ of direct isometries form a normal subgroup. The set I− of
indirect isometries form a coset with respect to I+. Both I+ and I are
non-Abelian groups.

Proof. Let I1 : z ′ = az + b, I2 : z ′ = cz + d , I3 : z ′ = a′z + b′, and
I4 : z ′ = c ′z + d ′ where |a| = |c | = |a′| = |c ′| = 1. Then

I1 ◦ I2 : z ′ = a(cz + d) + b = (ac)z + (ad + b)

I1 ◦ I3 : z ′ = a(a′z + b′) + b = (aa′)z + (ab′ + b)

I3 ◦ I1 : z ′ = a′(az + b) + b′ = (a′a)z + (a′b + b′)

I3 ◦ I4 : z ′ = a′(c ′z + d ′) + b′ = (a′c ′)z + (a′d ′ + b′)

and since |ac| = |a||c | = 1, |aa′| = |a||a′| = 1, |a′a| = |a′||a| = 1, and
|ac ′| = |a′||c ′| = |a||c ′| = 1 we have each of these compositions in I (and
these are all possible types of compositions of elements of I ), . . .
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Theorem 46.4. The Group Property of Isometries

Theorem 46.4 (continued 1)

Proof. . . . and so composition really is a binary operation on I . As
observed above, function composition is associative, so The Associative
Law holds. The identity is z ′ = z and The Identity Law holds. The inverse
of I1 : z ′ = az + b is I−1

1 : z ′ = a−1z − a−1b and the inverse of

I3 : z ′ = a′z + b′ is I−1
3 : (a′)−1z − (a′)−1b′ and The Inverse Law holds. So

I is a group, as claimed.
Notice that I1 ◦ I2 ∈ I+ and I−1

1 ∈ I+ so for any I1, I2 ∈ I+ we must
have I1 ◦ I−1

2 ∈ I+ and so by Theorem 44.4, I+ is a subgroup of I and
so is a group, as claimed.

We now show I− is a left coset of I+. Let a′z + b′ ∈ I− where |a′| = 1.
Then a′z + b′ ∈ I+, I ∗ : z ′ = z ∈ I−, and left coset I ∗I+ includes

I ∗ ◦ (a′z + b′) = (a′z + b′) = a′z + b′. Since a′z + b′ is an arbitrary
element of I− then I− ⊂ I ∗I+. Since the cosets of I+ partition I ,
then I− = I \I+ is a left coset of I+ and so I+ only has two cosets.
So by Theorem 45.3, “Subgroups of Index Two,”I+ is a normal subgroup
of I , as claimed.
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Theorem 46.4. The Group Property of Isometries

Theorem 46.4 (continued 2)

Theorem 46.4. The Group Property of Isometries.
The set I of isometries of the Gauss plane C form a group, with the
subset I+ of direct isometries form a normal subgroup. The set I− of
indirect isometries form a coset with respect to I+. Both I+ and I are
non-Abelian groups.

Proof. To establish the non-Abelian claim, notice that I5 : z ′ = iz and
I6 : z ′ = z + 1 are in I+ ⊂ I but I5 ◦ I6 : z ′ = iz + i and
I6 ◦ I5 : z ′ = iz + 1, so I5 ◦ I6 6= I6 ◦ I5 and I+, and hence I , are non
Abelian, as claimed.
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Corollary 46.4

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A′B ′C ′ a triangle where
I (A) = A′, I (B) = B ′, and I (C ) = C ′ for some direct isometry I ∈ I+. If
I1 ∈ I is any isometry of the Gauss plane C then the triangles with
vertices I1(A), I1(B),T1(C ) and vertices I1(A

′), I1(B
′), I1(C

′) are also
related by a direct isometry; that is, there is J ∈ I+ such that
J(I1(A)) = I1(A

′), J(I1(B)) = I1(B
′), and J(I1(C )) = I1(C

′).

Proof. Since I is a group by Theorem 46.4 then there is I−1
1 ∈ I . Let

J = I1 ◦ I ◦ I−1
1 . Then J(I1(A)) = I1 ◦ I ◦ I−1

1 (I1(A)) = I1 ◦ I (A) = I1(A
′),

J(I1(B)) = I1 ◦ I ◦ I−1
1 (I1(B)) = I1 ◦ I (A) = I1(B

′), and
J(I1(C )) = I1 ◦ I ◦ I−1

1 (I1(C )) = I1 ◦ I (C ) = I1(C
′).

So J has the desired
mapping property and, since I+ is a normal subgroup of I by Theorem
46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I−1

1 here)
J ∈ I+ is the desired direct isometry.
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vertices I1(A), I1(B),T1(C ) and vertices I1(A

′), I1(B
′), I1(C

′) are also
related by a direct isometry; that is, there is J ∈ I+ such that
J(I1(A)) = I1(A

′), J(I1(B)) = I1(B
′), and J(I1(C )) = I1(C

′).

Proof. Since I is a group by Theorem 46.4 then there is I−1
1 ∈ I . Let

J = I1 ◦ I ◦ I−1
1 . Then J(I1(A)) = I1 ◦ I ◦ I−1

1 (I1(A)) = I1 ◦ I (A) = I1(A
′),

J(I1(B)) = I1 ◦ I ◦ I−1
1 (I1(B)) = I1 ◦ I (A) = I1(B

′), and
J(I1(C )) = I1 ◦ I ◦ I−1

1 (I1(C )) = I1 ◦ I (C ) = I1(C
′). So J has the desired

mapping property and, since I+ is a normal subgroup of I by Theorem
46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I−1

1 here)
J ∈ I+ is the desired direct isometry.
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