Real Analysis

Chapter V. Mappings of the Euclidean Plane 46. Groups of Mappings—Proofs of Theorems

Real Analysis

- 2 Theorem 46.2. The Group of Dilative Rotations
- 3 Theorem 46.3. Groups of Central Dilations and Rotations
- Theorem 46.4. The Group Property of Isometries

5 Corollary 46.4

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof. Let $t_b: z' = z + b$, $T_c: z' = z + c$, and $T_d: z' = z + d$ be translations. Then $t_b \circ T_c: z' = (z + b) + c = z + (c + b)$ and so composition actually is a binary operation on \mathscr{T} . Also $T_c \circ T_c: z' = (z + b) + c = z + (b + c)$, so $T_b \circ T_c = T_b \circ T_c$ and the binary operation is commutative.

Real Analysis

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof. Let $t_h: z' = z + b$, $T_c: z' = z + c$, and $T_d: z' = z + d$ be translations. Then $t_b \circ T_c$: z' = (z + b) + c = z + (c + b) and so composition actually is a binary operation on \mathscr{T} . Also $T_c \circ T_c$: z' = (z+b) + c = z + (b+c), so $T_b \circ T_c = T_b \circ T_c$ and the binary operation is commutative. Now function composition is associative in general, and we have here specifically $T_b \circ (T_c \circ T_d) : z' = (z + (d + c)) + b = z + (d + c + b)$ and $(T_b \circ T_c) \circ T_d : z' = (z+d) + (c+b) = z + (d+c+b)$ so that $T_b \circ (T_c \circ T_d) = (T_b \circ T_c) \circ T_d$ and The Associative Law holds. The identity is $T_0: z' = z + 0 = z$ and the inverse of $T_b: z' = z + b$ is $(T_b)^{-1} = T_{-b}$: z' = z - b, so that The Law of Identity and The Law of Inverse hold. So \mathcal{T} is a group with a commutative binary operation. That is, \mathcal{T} is an Abelian group, as claimed. **Real Analysis** March 7, 2019 3 / 11

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof. Let $t_h: z' = z + b$, $T_c: z' = z + c$, and $T_d: z' = z + d$ be translations. Then $t_b \circ T_c$: z' = (z + b) + c = z + (c + b) and so composition actually is a binary operation on \mathscr{T} . Also $T_c \circ T_c$: z' = (z+b) + c = z + (b+c), so $T_b \circ T_c = T_b \circ T_c$ and the binary operation is commutative. Now function composition is associative in general, and we have here specifically $T_b \circ (T_c \circ T_d) : z' = (z + (d + c)) + b = z + (d + c + b)$ and $(T_b \circ T_c) \circ T_d : z' = (z + d) + (c + b) = z + (d + c + b)$ so that $T_{b} \circ (T_{c} \circ T_{d}) = (T_{b} \circ T_{c}) \circ T_{d}$ and The Associative Law holds. The identity is $T_0: z' = z + 0 = z$ and the inverse of $T_b: z' = z + b$ is $(T_b)^{-1} = T_{-b}$: z' = z - b, so that The Law of Identity and The Law of Inverse hold. So \mathscr{T} is a group with a commutative binary operation. That is, \mathscr{T} is an Abelian group, as claimed.

Theorem 46.1 (continued)

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof (continued). To prove the isomorphism, map $T_b \in \mathscr{T}$ to $b \in \mathbb{C}$. The mapping is "clearly" one to one and onto. For $T_b, T_c \in \mathscr{T}$, the mapping sends $T_b \circ T_c$ to b + c (since $T_b \circ T_c : z + (b + c)$), so the mapping is an isomorphism, as claimed.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z' = az) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_a : z' = az$. First, $D_a \circ D_b : z' = a(bz) = (ab)z$ so composition really is a binary operation on \mathscr{D} . Also, $D_b \circ D_a : z' = b(az) = (ba)z = (ab)z$ so that the binary operation is commutative.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z' = az) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_a : z' = az$. First, $D_a \circ D_b : z' = a(bz) = (ab)z$ so composition really is a binary operation on \mathscr{D} . Also, $D_b \circ D_a : z' = b(az) = (ba)z = (ab)z$ so that the binary operation is commutative. The identity is $D_1 : z' = z$ and The Identity Law holds. The inverse of D_a is $D_{z^{-1}}$ since $D_a \circ D_{a^{-1}} : z' = a(a^{-1}z) = (aa^{-1})z = z$ and The Inverse Law holds. Finally, $D_a \circ (D_b \circ D_c) : z' = a(bcz) = (abc)z$ and $(D_a \circ (D_b \circ D_c) : z' = (ab)(cz) = (abc)z$ so $D_a \circ (D_b \circ D_c) = (D_a \circ D_b) \circ D_c$ so that The Associative Law holds and so \mathscr{D} is an Abelian group.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z' = az) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_a : z' = az$. First, $D_a \circ D_b$: z' = a(bz) = (ab)z so composition really is a binary operation on \mathcal{D} . Also, $D_b \circ D_a : z' = b(az) = (ba)z = (ab)z$ so that the binary operation is commutative. The identity is $D_1 : z' = z$ and The Identity Law holds. The inverse of D_a is $D_{z^{-1}}$ since $D_a \circ D_{a^{-1}}$: $z' = a(a^{-1}z) = (aa^{-1})z = z$ and The Inverse Law holds. Finally, $D_a \circ (D_b \circ D_c) : z' = a(bcz) = (abc)z$ and $(D_a \circ (D_b \circ D_c) : z' = (ab)(cz) = (abc)z$ so $D_a \circ (D_b \circ D_c) = (D_a \circ D_b) \circ D_c$ so that The Associative Law holds and so \mathcal{D} is an Abelian group.

Theorem 46.2 (continued)

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z' = az) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof (continued). If we map $D_a \mapsto z$ then the mapping is "clearly" a bijection between \mathscr{D} and $\mathbb{C} \setminus \{0\}$. Since $D_1 \circ D_b : z' = (ab)z$ and $D_{ab} : z' = (ab)z$ then the mapping of $D_z \circ D_b$ is the same as the mapping of $D_a \circ D_b$ is the same as the mapping of D_{ab} (since both are mapped to ab). Therefore the map is an isomorphism between \mathscr{D} and $\mathbb{C} \setminus \{0\}$ under multiplication, as claimed.

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z' = az where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^* of \mathscr{D} . The rotations about the origin (of the form z' = az where |a| = 1) form a subgroup \mathscr{R}_0 of \mathscr{D} . Both \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Proof. For central dilations, consider D_a and $(D_b)^{-1}$ in \mathcal{D}^* . We see in the proof of Theorem 46.2 that $D_b^{-1} = D_{b^{-1}}$ and so $D_a \circ (D_b)^{-1} = D_a \circ D_{b^{-1}} : z' = a(b^{-1}z) = (ab^{-1})z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $ab^{-1} \in \mathbb{R}$ and so $D_a \circ (D_b)^{-1} = D_{ab^{-1}} \in \mathcal{D}^*$ and by Theorem 44.2, \mathcal{D}^* is a subgroup of \mathcal{D} .

Theorem 46.3. Groups of Central Dilations and Rotations. The central dilations (of the form z' = az where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathcal{D}^* of \mathcal{D} . The rotations about the origin (of the form z' = az where |a| = 1) form a subgroup \mathcal{R}_0 of \mathcal{D} . Both \mathcal{D}^* and \mathcal{R}_0 are Abelian.

Proof. For central dilations, consider D_a and $(D_b)^{-1}$ in \mathscr{D}^* . We see in the proof of Theorem 46.2 that $D_b^{-1} = D_{b^{-1}}$ and so $D_a \circ (D_b)^{-1} = D_a \circ D_{b^{-1}} : z' = a(b^{-1}z) = (ab^{-1})z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $ab^{-1} \in \mathbb{R}$ and so $D_a \circ (D_b)^{-1} = D_{ab^{-1}} \in \mathscr{D}^*$ and by Theorem 44.2, \mathscr{D}^* is a subgroup of \mathscr{D} .

For rotations about the origin, consider D_a and $(D_b)^{-1}$ in \mathscr{R}_0 (so that |a| = |b| = 1). Then, as above, $D_a \circ (D_b)^{-1} = D_{ab^{-1}}$ and since $|ab^{-1}| = |a||b^{-1}| = 1$ then $D_a \circ (D_b)^{-1} \in \mathscr{R}_0$ and by Theorem 44.2, \mathscr{R}_0 is a subgroup of \mathscr{D} .

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z' = az where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^* of \mathscr{D} . The rotations about the origin (of the form z' = az where |a| = 1) form a subgroup \mathscr{R}_0 of \mathscr{D} . Both \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Proof. For central dilations, consider D_a and $(D_b)^{-1}$ in \mathscr{D}^* . We see in the proof of Theorem 46.2 that $D_b^{-1} = D_{b^{-1}}$ and so $D_a \circ (D_b)^{-1} = D_a \circ D_{b^{-1}} : z' = a(b^{-1}z) = (ab^{-1})z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $ab^{-1} \in \mathbb{R}$ and so $D_a \circ (D_b)^{-1} = D_{ab^{-1}} \in \mathscr{D}^*$ and by Theorem 44.2, \mathscr{D}^* is a subgroup of \mathscr{D} .

For rotations about the origin, consider D_a and $(D_b)^{-1}$ in \mathscr{R}_0 (so that |a| = |b| = 1). Then, as above, $D_a \circ (D_b)^{-1} = D_{ab^{-1}}$ and since $|ab^{-1}| = |a||b^{-1}| = 1$ then $D_a \circ (D_b)^{-1} \in \mathscr{R}_0$ and by Theorem 44.2, \mathscr{R}_0 is a subgroup of \mathscr{D} .

Since \mathscr{D} is Abelian then \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z' = az where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^* of \mathscr{D} . The rotations about the origin (of the form z' = az where |a| = 1) form a subgroup \mathscr{R}_0 of \mathscr{D} . Both \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Proof. For central dilations, consider D_a and $(D_b)^{-1}$ in \mathscr{D}^* . We see in the proof of Theorem 46.2 that $D_b^{-1} = D_{b^{-1}}$ and so $D_a \circ (D_b)^{-1} = D_a \circ D_{b^{-1}} : z' = a(b^{-1}z) = (ab^{-1})z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $ab^{-1} \in \mathbb{R}$ and so $D_a \circ (D_b)^{-1} = D_{ab^{-1}} \in \mathscr{D}^*$ and by Theorem 44.2, \mathscr{D}^* is a subgroup of \mathscr{D} .

For rotations about the origin, consider D_a and $(D_b)^{-1}$ in \mathscr{R}_0 (so that |a| = |b| = 1). Then, as above, $D_a \circ (D_b)^{-1} = D_{ab^{-1}}$ and since $|ab^{-1}| = |a||b^{-1}| = 1$ then $D_a \circ (D_b)^{-1} \in \mathscr{R}_0$ and by Theorem 44.2, \mathscr{R}_0 is a subgroup of \mathscr{D} .

Since \mathscr{D} is Abelian then \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Proof. Let
$$l_1 : z' = az + b$$
, $l_2 : z' = cz + d$, $l_3 : z' = a'\overline{z} + b'$, and
 $l_4 : z' = c'\overline{z} + d'$ where $|a| = |c| = |a'| = |c'| = 1$. Then
 $l_1 \circ l_2 : z' = a(cz + d) + b = (ac)z + (ad + b)$
 $l_1 \circ l_3 : z' = a(a'\overline{z} + b') + b = (aa')\overline{z} + (ab' + b)$
 $l_3 \circ l_1 : z' = a'(\overline{az + b}) + b' = (a'\overline{a})\overline{z} + (a'\overline{b} + b')$
 $l_3 \circ l_4 : z' = a'(\overline{c'\overline{z} + d'}) + b' = (a'\overline{c'})z + (a'\overline{d'} + b')$
and since $|ac| = |a||c| = 1$, $|aa'| = |a||a'| = 1$, $|a'\overline{a}| = |a'||\overline{a}| = 1$, and
 $|a\overline{c'}| = |a'||\overline{c'}| = |a||c'| = 1$ we have each of these compositions in \mathscr{I} (and these are all possible types of compositions of elements of \mathscr{I})

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Proof. Let
$$I_1 : z' = az + b$$
, $I_2 : z' = cz + d$, $I_3 : z' = a'\overline{z} + b'$, and
 $I_4 : z' = c'\overline{z} + d'$ where $|a| = |c| = |a'| = |c'| = 1$. Then
 $I_1 \circ I_2 : z' = a(cz + d) + b = (ac)z + (ad + b)$
 $I_1 \circ I_3 : z' = a(a'\overline{z} + b') + b = (aa')\overline{z} + (ab' + b)$
 $I_3 \circ I_1 : z' = a'(\overline{az + b}) + b' = (a'\overline{a})\overline{z} + (a'\overline{b} + b')$
 $I_3 \circ I_4 : z' = a'(\overline{c'\overline{z} + d'}) + b' = (a'\overline{c'})z + (a'\overline{d'} + b')$
and since $|ac| = |a||c| = 1$, $|aa'| = |a||a'| = 1$, $|a'\overline{a}| = |a'||\overline{a}| = 1$, and
 $|a\overline{c'}| = |a'||\overline{c'}| = |a||c'| = 1$ we have each of these compositions in \mathscr{I} (and
these are all possible types of compositions of elements of \mathscr{I}), ...

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I} . As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $l_1 : z' = az + b$ is $l_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $l_3 : z' = a'\overline{z} + b'$ is $l_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed. Notice that $l_1 \circ l_2 \in \mathscr{I}_+$ and $l_1^{-1} \in \mathscr{I}_+$ so for any $l_1, l_2 \in \mathscr{I}_+$ we must

have $I_1 \circ I_2^{-1} \in \mathscr{I}_+$ and so by Theorem 44.4, \mathscr{I}_+ is a subgroup of \mathscr{I} and so is a group, as claimed.

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I} . As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $l_1 : z' = az + b$ is $l_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $l_3 : z' = a'\overline{z} + b'$ is $l_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed. Notice that $l_1 \circ l_2 \in \mathscr{I}_+$ and $l_1^{-1} \in \mathscr{I}_+$ so for any $l_1, l_2 \in \mathscr{I}_+$ we must

have $l_1 \circ l_2^{-1} \in \mathscr{I}_+$ and so by Theorem 44.4, \mathscr{I}_+ is a subgroup of \mathscr{I} and so is a group, as claimed.

We now show \mathscr{I}_{-} is a left coset of \mathscr{I}_{+} . Let $a'\overline{z} + b' \in \mathscr{I}_{-}$ where |a'| = 1. Then $\overline{a'z} + \overline{b'} \in \mathscr{I}_{+}$, $l^* : z' = \overline{z} \in \mathscr{I}_{-}$, and left coset $l^*\mathscr{I}_{+}$ includes $l^* \circ (\overline{a'z} + \overline{b'}) = (\overline{a'z} + \overline{b'}) = a'\overline{z} + b'$. Since $a'\overline{z} + b'$ is an arbitrary element of \mathscr{I}_{-} then $\mathscr{I}_{-} \subset l^*\mathscr{I}_{+}$. Since the cosets of \mathscr{I}_{+} partition \mathscr{I} , then $\mathscr{I}_{-} = \mathscr{I} \setminus \mathscr{I}_{+}$ is a left coset of \mathscr{I}_{+} and so \mathscr{I}_{+} only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{I}_{+} is a normal subgroup of \mathscr{I} , as claimed.

()

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I} . As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $l_1 : z' = az + b$ is $l_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $l_3 : z' = a'\overline{z} + b'$ is $l_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed. Notice that $l_1 \circ l_2 \in \mathscr{I}_+$ and $l_1^{-1} \in \mathscr{I}_+$ so for any $l_1, l_2 \in \mathscr{I}_+$ we must have $l_1 \circ l_2^{-1} \in \mathscr{I}_+$ and so by Theorem 44.4, \mathscr{I}_+ is a subgroup of \mathscr{I} and so is a group, as claimed.

We now show \mathscr{I}_{-} is a left coset of \mathscr{I}_{+} . Let $a'\overline{z} + b' \in \mathscr{I}_{-}$ where |a'| = 1. Then $\overline{a'z} + \overline{b'} \in \mathscr{I}_{+}$, $l^* : z' = \overline{z} \in \mathscr{I}_{-}$, and left coset $l^*\mathscr{I}_{+}$ includes $l^* \circ (\overline{a'z} + \overline{b'}) = \overline{(\overline{a'z} + \overline{b'})} = a'\overline{z} + b'$. Since $a'\overline{z} + b'$ is an arbitrary element of \mathscr{I}_{-} then $\mathscr{I}_{-} \subset l^*\mathscr{I}_{+}$. Since the cosets of \mathscr{I}_{+} partition \mathscr{I} , then $\mathscr{I}_{-} = \mathscr{I} \setminus \mathscr{I}_{+}$ is a left coset of \mathscr{I}_{+} and so \mathscr{I}_{+} only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{I}_{+} is a normal subgroup of \mathscr{I} , as claimed.

()

Theorem 46.4 (continued 2)

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Proof. To establish the non-Abelian claim, notice that $I_5: z' = iz$ and $I_6: z' = z + 1$ are in $\mathscr{I}_+ \subset \mathscr{I}$ but $I_5 \circ I_6: z' = iz + i$ and $I_6 \circ I_5: z' = iz + 1$, so $I_5 \circ I_6 \neq I_6 \circ I_5$ and \mathscr{I}_+ , and hence \mathscr{I} , are non Abelian, as claimed.

Corollary 46.4

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B'C' a triangle where I(A) = A', I(B) = B', and I(C) = C' for some direct isometry $I \in \mathscr{I}_+$. If $I_1 \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_1(A), I_1(B), T_1(C)$ and vertices $I_1(A'), I_1(B'), I_1(C')$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_+$ such that $J(I_1(A)) = I_1(A'), J(I_1(B)) = I_1(B')$, and $J(I_1(C)) = I_1(C')$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_1^{-1} \in \mathscr{I}$. Let $J = I_1 \circ I \circ I_1^{-1}$. Then $J(I_1(A)) = I_1 \circ I \circ I_1^{-1}(I_1(A)) = I_1 \circ I(A) = I_1(A')$, $J(I_1(B)) = I_1 \circ I \circ I_1^{-1}(I_1(B)) = I_1 \circ I(A) = I_1(B')$, and $J(I_1(C)) = I_1 \circ I \circ I_1^{-1}(I_1(C)) = I_1 \circ I(C) = I_1(C')$.

Corollary 46.4

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B'C' a triangle where I(A) = A', I(B) = B', and I(C) = C' for some direct isometry $I \in \mathscr{I}_+$. If $I_1 \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_1(A), I_1(B), T_1(C)$ and vertices $I_1(A'), I_1(B'), I_1(C')$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_+$ such that $J(I_1(A)) = I_1(A'), J(I_1(B)) = I_1(B')$, and $J(I_1(C)) = I_1(C')$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_1^{-1} \in \mathscr{I}$. Let $J = I_1 \circ I \circ I_1^{-1}$. Then $J(I_1(A)) = I_1 \circ I \circ I_1^{-1}(I_1(A)) = I_1 \circ I(A) = I_1(A')$, $J(I_1(B)) = I_1 \circ I \circ I_1^{-1}(I_1(B)) = I_1 \circ I(A) = I_1(B')$, and $J(I_1(C)) = I_1 \circ I \circ I_1^{-1}(I_1(C)) = I_1 \circ I(C) = I_1(C')$. So J has the desired mapping property and, since \mathscr{I}_+ is a normal subgroup of \mathscr{I} by Theorem 46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I_1^{-1} here) $J \in \mathscr{I}_+$ is the desired direct isometry.

Corollary 46.4

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B'C' a triangle where I(A) = A', I(B) = B', and I(C) = C' for some direct isometry $I \in \mathscr{I}_+$. If $I_1 \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_1(A), I_1(B), T_1(C)$ and vertices $I_1(A'), I_1(B'), I_1(C')$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_+$ such that $J(I_1(A)) = I_1(A'), J(I_1(B)) = I_1(B')$, and $J(I_1(C)) = I_1(C')$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_1^{-1} \in \mathscr{I}$. Let $J = I_1 \circ I \circ I_1^{-1}$. Then $J(I_1(A)) = I_1 \circ I \circ I_1^{-1}(I_1(A)) = I_1 \circ I(A) = I_1(A')$, $J(I_1(B)) = I_1 \circ I \circ I_1^{-1}(I_1(B)) = I_1 \circ I(A) = I_1(B')$, and $J(I_1(C)) = I_1 \circ I \circ I_1^{-1}(I_1(C)) = I_1 \circ I(C) = I_1(C')$. So J has the desired mapping property and, since \mathscr{I}_+ is a normal subgroup of \mathscr{I} by Theorem 46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I_1^{-1} here) $J \in \mathscr{I}_+$ is the desired direct isometry.