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Theorem 46.1

Theorem 46.1. The translation of the Gauss plane C form an Abelian
group .7 which is isomorphic to the additive group of complex numbers.
The group operation on .7 is composition of mappings.
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Theorem 46.1

Theorem 46.1. The translation of the Gauss plane C form an Abelian
group .7 which is isomorphic to the additive group of complex numbers.
The group operation on .7 is composition of mappings.

Proof. Let tp: 2/ =z+b, T.:Z =z+c,and Tg: 2 =z+ d be
translations. Then tpo T, : 2 =(z+ b)+ c=2z+ (c+ b) and so
composition actually is a binary operation on .. Also
TcoTe:Z=(z+b)+c=z+(b+c),so Tpo Tc = Tpo T, and the
binary operation is commutative.

Real Analysis NEndn 8 il



Theorem 46.1

Theorem 46.1. The translation of the Gauss plane C form an Abelian
group .7 which is isomorphic to the additive group of complex numbers.
The group operation on .7 is composition of mappings.

Proof. Let tp: 2/ =z+b, T.:Z =z+c,and Tg: 2 =z+ d be
translations. Then tpo T, : 2 =(z+ b)+ c=2z+ (c+ b) and so
composition actually is a binary operation on .. Also
TcoTe:Z=(z+b)+c=z+(b+c),so Tpo Tc = Tpo T, and the
binary operation is commutative. Now function composition is associative
in general, and we have here specifically

Tpo(TcoTy):Z =(z+(d+c))+b=z+(d+c+b) and
(ThoTe)oTy:2 =(z+d)+(c+b)=z+(d+ c+ b) so that
Tpo(Tco Ty)=(Tpo T¢)o Ty and The Associative Law holds. The
identity is Tg: 2 =z+0=zand theinverseof T, :zZ/  =z+ b is
(Tp)™' = T_p: 2/ = z— b, so that The Law of Identity and The Law of
Inverse hold. So 7 is a group with a commutative binary operation. That
is, 7 is an Abelian group, as claimed.
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Theorem 46.1 (continued)

Theorem 46.1. The translation of the Gauss plane C form an Abelian

group .7 which is isomorphic to the additive group of complex numbers.

The group operation on .7 is composition of mappings.

Proof (continued). To prove the isomorphism, map T, € 7 to b € C.

The mapping is “clearly” one to one and onto. For Ty, T, € 7, the
mapping sends Tp o T. to b+ ¢ (since Tpo T.: z+ (b+ c)), so the
mapping is an isomorphism, as claimed.
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Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane C about the origin (of the form
7z = az) form an Abelian group 2 (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.
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Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane C about the origin (of the form
7z = az) form an Abelian group 2 (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.

Proof. For every non-zero a € C, define D, : Z/ = az. First,

D, o Dy : Z/ = a(bz) = (ab)z so composition really is a binary operation
on 9. Also, Dpo D, : z/ = b(az) = (ba)z = (ab)z so that the binary
operation is commutative.
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Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane C about the origin (of the form
7z = az) form an Abelian group 2 (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.

Proof. For every non-zero a € C, define D, : Z/ = az. First,

D, o Dy : Z/ = a(bz) = (ab)z so composition really is a binary operation
on 9. Also, Dpo D, : z/ = b(az) = (ba)z = (ab)z so that the binary
operation is commutative. The identity is D; : Z/ = z and The ldentity
Law holds. The inverse of D, is D,-1 since

D,oD,1:7Z = a(a='z) = (aa 1)z = z and The Inverse Law holds.
Finally, D, o (Dpo D.) : 2/ = a(bcz) = (abc)z and

(Dyo0(Dpo D) :z' = (ab)(cz) = (abc)z so

D,o(DpoD.) = (D;o Dp)o D, so that The Associative Law holds and so
2 is an Abelian group.
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Theorem 46.2 (continued)

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane C about the origin (of the form
7' = az) form an Abelian group 2 (where the binary operation is
composition) which is isomorphic to the multiplicative group of the
non-zero complex numbers.

Proof (continued). If we map D, — z then the mapping is “clearly” a
bijection between  and C\ {0}. Since D; o Dy : z/ = (ab)z and

D,y : 2/ = (ab)z then the mapping of D, o Dy, is the same as the mapping
of D, o Dy is the same as the mapping of D, (since both are mapped to
ab). Therefore the map is an isomorphism between & and C\ {0} under
multiplication, as claimed. O
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Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form z’ = az where a € R and a # 0) form a

subgroup Z* of 2. The rotations about the origin (of the form 2z’ = az
where |a| = 1) form a subgroup %, of 2. Both Z* and %, are Abelian.
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Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z’ = az where a € R and a # 0) form a
subgroup Z* of 2. The rotations about the origin (of the form 2z’ = az
where |a| = 1) form a subgroup %, of 2. Both Z* and %, are Abelian.

Proof. For central dilations, consider D, and (Dy)™! in 2*. We see in the
proof of Theorem 46.2 that Db_1 = Dp-1 and so

Dyo(Dp)t =DsoDpy1:2 =a(b~tz) = (ab"1)z. Since a,b € R (and
are non-zero) then ab™! € R and so D, o (Dp)™! = D,p-1 € 2* and by
Theorem 44.2, * is a subgroup of 2.
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Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z’ = az where a € R and a # 0) form a
subgroup Z* of 2. The rotations about the origin (of the form 2z’ = az
where |a| = 1) form a subgroup %, of 2. Both Z* and %, are Abelian.

Proof. For central dilations, consider D, and (Dy)™! in 2*. We see in the
proof of Theorem 46.2 that Db_1 = Dp-1 and so

Dyo(Dp)t =DsoDpy1:2 =a(b~tz) = (ab"1)z. Since a,b € R (and
are non-zero) then ab™! € R and so D, o (Dp)™! = D,p-1 € 2* and by
Theorem 44.2, * is a subgroup of 2.

For rotations about the origin, consider D, and (Dp)~! in %, (so that

la| = |b| = 1). Then, as above, D, o (Dy)~! = D,,-1 and since

lab=t| = |a||b~| = 1 then D, 0 (Dp)~t € %o and by Theorem 44.2, %, is
a subgroup of Z.
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Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z’ = az where a € R and a # 0) form a
subgroup Z* of 2. The rotations about the origin (of the form 2z’ = az
where |a| = 1) form a subgroup %, of 2. Both Z* and %, are Abelian.

Proof. For central dilations, consider D, and (Dy)™! in 2*. We see in the
proof of Theorem 46.2 that Db_1 = Dp-1 and so

Dyo(Dp)t =DsoDpy1:2 =a(b~tz) = (ab"1)z. Since a,b € R (and
are non-zero) then ab™! € R and so D, o (Dp)™! = D,p-1 € 2* and by
Theorem 44.2, * is a subgroup of 2.

For rotations about the origin, consider D, and (Dp)~! in %, (so that

la| = |b| = 1). Then, as above, D, o (Dy)~! = D,,-1 and since

lab=t| = |a||b~| = 1 then D, 0 (Dp)~t € %o and by Theorem 44.2, %, is
a subgroup of Z.

Since Z is Abelian then 2* and %, are Abelian. O

Real Analysis March 7, 2019 7 /11



Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.
The set .# of isometries of the Gauss plane C form a group, with the
subset .#, of direct isometries form a normal subgroup. The set .#_ of

indirect isometries form a coset with respect to .. Both ., and . are
non-Abelian groups.
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Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.

The set .# of isometries of the Gauss plane C form a group, with the
subset .#, of direct isometries form a normal subgroup. The set .#_ of
indirect isometries form a coset with respect to .. Both ., and . are
non-Abelian groups.

Proof. Let I, : 2/ =az+ b, b:zZ =cz+d, h:zZ =3az+ b, and
ly : 2/ = 'z + d" where |a] = |c| = || = |c/| = 1. Then
hohk:z =a(cz+d)+ b= (ac)z+ (ad + b)
holy:z =a(dz+b)+b=(ad)z+ (ab' + b)
ol :7 =ad(az+ b)+b = (aa)z+ (a'b+ V)
Boly:z =a(cdz+d)+b =(ac)z+(dd + V)

and since |ac| = |a|[c| = 1, [ad'| = |a[|a'| = 1, |a'a] = [4[|a] = 1, and
lac’| = |d'||c’| = |al|c’| = 1 we have each of these compositions in .# (and

these are all possible types of compositions of elements of .#), ...
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Theorem 46.4 (continued 1)

Proof. ...and so composition really is a binary operation on .#. As
observed above, function composition is associative, so The Associative
Law holds. The identity is z/ = z and The Identity Law holds. The inverse
of h:Z=az+bis lfl :z/ = a 'z — a=1b and the inverse of

h:z =az+bislyt:(a)"1Z — (a)~1F and The Inverse Law holds. So
# is a group, as claimed.
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Theorem 46.4 (continued 1)

Proof. ...and so composition really is a binary operation on .#. As
observed above, function composition is associative, so The Associative
Law holds. The identity is z/ = z and The Identity Law holds. The inverse
of h:Z=az+bis lfl :z/ = a 'z — a=1b and the inverse of

h:z =az+bislyt:(a)"1Z — (a)~1F and The Inverse Law holds. So
# is a group, as claimed.

Notice that l; o b € .#, and Il_1 € 4, so for any I, € #, we must
have /o /{1 € Z, and so by Theorem 44.4, .#, is a subgroup of .# and
so is a group, as claimed.
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Theorem 46.4 (continued 1)

Proof. ...and so composition really is a binary operation on .#. As
observed above, function composition is associative, so The Associative
Law holds. The identity is z/ = z and The Identity Law holds. The inverse
of h:Z=az+bis lfl :z/ = a 'z — a=1b and the inverse of

h:z =az+bislyt:(a)"1Z — (a)~1F and The Inverse Law holds. So
# is a group, as claimed.

Notice that l; o b € .#, and Il_1 € 4, so for any I, € #, we must
have /o /{1 € Z, and so by Theorem 44.4, .#, is a subgroup of .# and
so is a group, as claimed.

We now show .#_ is a left coset of .Z,. Let aZ+ b’ € #_ where |d/| = 1.
Then az+b € S, I*: 2/ =z € #_, and left coset I*.7, includes
I*o(az+b)=(az+P)=3aZ+b. Since @z + b is an arbitrary
element of .Z_ then .#_ C I*.#,. Since the cosets of .# partition .7,
then /_ = .7\ ., is a left coset of .#; and so .#; only has two cosets.
So by Theorem 45.3, “Subgroups of Index Two,” .# is a normal subgroup
of .Z, as claimed.
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Theorem 46.4 (continued 2)

Theorem 46.4. The Group Property of Isometries.

The set .# of isometries of the Gauss plane C form a group, with the
subset .#, of direct isometries form a normal subgroup. The set .#_ of
indirect isometries form a coset with respect to .#,. Both ., and . are
non-Abelian groups.

Proof. To establish the non-Abelian claim, notice that I : Z = iz and
l:zZ=z+1arein . C # butlsolg:z =iz+iand

lools:2z =iz+1,s0ls0lg# lgols and .#,, and hence ., are non
Abelian, as claimed. Ul
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Corollary 46.4

Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B’'C’ a triangle where

I(A) = A", I(B) = B', and I(C) = C’ for some direct isometry | € 7. If
lh € . is any isometry of the Gauss plane C then the triangles with
vertices I1(A), (B), T1(C) and vertices I (A"), h(B"), h(C’) are also
related by a direct isometry; that is, there is J € .#, such that

J(L(A)) = h(A'), J(L(B)) = h(B'), and J(h(C)) = h(C').

Real Analysis March 7, 2019 11 /11



Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B’'C’ a triangle where

I(A) = A", I(B) = B', and I(C) = C’ for some direct isometry | € 7. If
lh € . is any isometry of the Gauss plane C then the triangles with
vertices I1(A), (B), T1(C) and vertices I (A"), h(B"), h(C’) are also
related by a direct isometry; that is, there is J € .#, such that

J(L(A)) = h(A'), J(L(B)) = h(B'), and J(h(C)) = h(C').

Proof. Since .# is a group by Theorem 46.4 then there is I[* € 7. Let
J=1lolol . Then J(h(A)) = holol Y (l(A)) =l ol(A) = h(A),
J(h(B)) = holol *(h(B))=hol(A)=h(B'), and

J(h(C)) = holol *(h(C))=hol(C)=h(C).

Real Analysis March 7, 2019 11 /11



Corollary 46.4

Corollary 46.4. Let ABC be a triangle and A'B’'C’ a triangle where

I(A) = A", I(B) = B', and I(C) = C’ for some direct isometry | € 7. If
lh € . is any isometry of the Gauss plane C then the triangles with
vertices I1(A), (B), T1(C) and vertices I (A"), h(B"), h(C’) are also
related by a direct isometry; that is, there is J € .#, such that

J(L(A)) = h(A'), J(L(B)) = h(B'), and J(h(C)) = h(C').

Proof. Since .# is a group by Theorem 46.4 then there is I[* € 7. Let
J=1lolol . Then J(h(A)) = holol Y (l(A)) =l ol(A) = h(A),
J(h(B)) = holol *(h(B))=hol(A)=h(B'), and

J(h(C)) =holol Y(h(C))=lhol(C)=h(C'). So J has the desired
mapping property and, since ., is a normal subgroup of .# by Theorem
46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to /;* here)

J € 7, is the desired direct isometry. Ol
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