Real Analysis

Chapter V. Mappings of the Euclidean Plane

 46. Groups of Mappings—Proofs of Theorems

Table of contents

(1) Theorem 46.1
(2) Theorem 46.2. The Group of Dilative Rotations
(3) Theorem 46.3. Groups of Central Dilations and Rotations

4 Theorem 46.4. The Group Property of Isometries
(5) Corollary 46.4

Theorem 46.1

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof. Let $t_{b}: z^{\prime}=z+b, T_{c}: z^{\prime}=z+c$, and $T_{d}: z^{\prime}=z+d$ be translations. Then $t_{b} \circ T_{c}: z^{\prime}=(z+b)+c=z+(c+b)$ and so composition actually is a binary operation on \mathscr{T}. Also $T_{c} \circ T_{c}: z^{\prime}=(z+b)+c=z+(b+c)$, so $T_{b} \circ T_{c}=T_{b} \circ T_{c}$ and the binary operation is commutative.

Theorem 46.1

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof. Let $t_{b}: z^{\prime}=z+b, T_{c}: z^{\prime}=z+c$, and $T_{d}: z^{\prime}=z+d$ be translations. Then $t_{b} \circ T_{c}: z^{\prime}=(z+b)+c=z+(c+b)$ and so composition actually is a binary operation on \mathscr{T}. Also $T_{c} \circ T_{c}: z^{\prime}=(z+b)+c=z+(b+c)$, so $T_{b} \circ T_{c}=T_{b} \circ T_{c}$ and the binary operation is commutative. Now function composition is associative
in general, and we have here specifically

 $T_{b} \circ\left(T_{c} \circ T_{d}\right)=\left(T_{b} \circ T_{c}\right) \circ T_{d}$ and The Associative Law holds. The identity is $T_{0}: z^{\prime}=z+0=z$ and the inverse of $T_{b}: z^{\prime}=z+b$ is $\left(T_{b}\right)^{-1}=T_{-b}: z^{\prime}=z-b$, so that The Law of Identity and The Law of Inverse hold. So \mathscr{T} is a group with a commutative binary operation. That is, \mathscr{T} is an Abelian group, as claimed.

Theorem 46.1

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.
Proof. Let $t_{b}: z^{\prime}=z+b, T_{c}: z^{\prime}=z+c$, and $T_{d}: z^{\prime}=z+d$ be translations. Then $t_{b} \circ T_{c}: z^{\prime}=(z+b)+c=z+(c+b)$ and so composition actually is a binary operation on \mathscr{T}. Also $T_{c} \circ T_{c}: z^{\prime}=(z+b)+c=z+(b+c)$, so $T_{b} \circ T_{c}=T_{b} \circ T_{c}$ and the binary operation is commutative. Now function composition is associative in general, and we have here specifically
$T_{b} \circ\left(T_{c} \circ T_{d}\right): z^{\prime}=(z+(d+c))+b=z+(d+c+b)$ and $\left(T_{b} \circ T_{c}\right) \circ T_{d}: z^{\prime}=(z+d)+(c+b)=z+(d+c+b)$ so that $T_{b} \circ\left(T_{c} \circ T_{d}\right)=\left(T_{b} \circ T_{c}\right) \circ T_{d}$ and The Associative Law holds. The identity is $T_{0}: z^{\prime}=z+0=z$ and the inverse of $T_{b}: z^{\prime}=z+b$ is $\left(T_{b}\right)^{-1}=T_{-b}: z^{\prime}=z-b$, so that The Law of Identity and The Law of Inverse hold. So \mathscr{T} is a group with a commutative binary operation. That is, \mathscr{T} is an Abelian group, as claimed.

Theorem 46.1 (continued)

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Proof (continued). To prove the isomorphism, map $T_{b} \in \mathscr{T}$ to $b \in \mathbb{C}$. The mapping is "clearly" one to one and onto. For $T_{b}, T_{c} \in \mathscr{T}$, the mapping sends $T_{b} \circ T_{c}$ to $b+c$ (since $T_{b} \circ T_{c}: z+(b+c)$), so the mapping is an isomorphism, as claimed.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.
The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form $z^{\prime}=a z$) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_{a}: z^{\prime}=a z$. First,
$D_{a} \circ D_{b}: z^{\prime}=a(b z)=(a b) z$ so composition really is a binary operation on \mathscr{D}. Also, $D_{b} \circ D_{a}: z^{\prime}=b(a z)=(b a) z=(a b) z$ so that the binary operation is commutative.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form $z^{\prime}=a z$) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_{a}: z^{\prime}=a z$. First, $D_{a} \circ D_{b}: z^{\prime}=a(b z)=(a b) z$ so composition really is a binary operation on \mathscr{D}. Also, $D_{b} \circ D_{a}: z^{\prime}=b(a z)=(b a) z=(a b) z$ so that the binary operation is commutative. The identity is $D_{1}: z^{\prime}=z$ and The Identity Law holds. The inverse of D_{a} is $D_{z^{-1}}$ since

$D_{a} \circ\left(D_{b} \circ D_{c}\right)=\left(D_{a} \circ D_{b}\right) \circ D_{c}$ so that The Associative Law holds and so \mathscr{D} is an Abelian group.

Theorem 46.2. The Group of Dilative Rotations

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form $z^{\prime}=a z$) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof. For every non-zero $a \in \mathbb{C}$, define $D_{a}: z^{\prime}=a z$. First, $D_{a} \circ D_{b}: z^{\prime}=a(b z)=(a b) z$ so composition really is a binary operation on \mathscr{D}. Also, $D_{b} \circ D_{a}: z^{\prime}=b(a z)=(b a) z=(a b) z$ so that the binary operation is commutative. The identity is $D_{1}: z^{\prime}=z$ and The Identity Law holds. The inverse of D_{a} is $D_{z^{-1}}$ since $D_{a} \circ D_{a^{-1}}: z^{\prime}=a\left(a^{-1} z\right)=\left(a a^{-1}\right) z=z$ and The Inverse Law holds. Finally, $D_{a} \circ\left(D_{b} \circ D_{c}\right): z^{\prime}=a(b c z)=(a b c) z$ and $\left(D_{a} \circ\left(D_{b} \circ D_{c}\right): z^{\prime}=(a b)(c z)=(a b c) z\right.$ so $D_{a} \circ\left(D_{b} \circ D_{c}\right)=\left(D_{a} \circ D_{b}\right) \circ D_{c}$ so that The Associative Law holds and so \mathscr{D} is an Abelian group.

Theorem 46.2 (continued)

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form $z^{\prime}=a z$) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Proof (continued). If we map $D_{a} \mapsto z$ then the mapping is "clearly" a bijection between \mathscr{D} and $\mathbb{C} \backslash\{0\}$. Since $D_{1} \circ D_{b}: z^{\prime}=(a b) z$ and $D_{a b}: z^{\prime}=(a b) z$ then the mapping of $D_{z} \circ D_{b}$ is the same as the mapping of $D_{a} \circ D_{b}$ is the same as the mapping of $D_{a b}$ (since both are mapped to $a b)$. Therefore the map is an isomorphism between \mathscr{D} and $\mathbb{C} \backslash\{0\}$ under multiplication, as claimed.

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form $z^{\prime}=a z$ where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^{*} of \mathscr{D}. The rotations about the origin (of the form $z^{\prime}=a z$ where $|a|=1$) form a subgroup \mathscr{R}_{0} of \mathscr{D}. Both \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Proof. For central dilations, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{D}^{*}. We see in the proof of Theorem 46.2 that $D_{b}^{-1}=D_{b^{-1}}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a} \circ D_{b^{-1}}: z^{\prime}=a\left(b^{-1} z\right)=\left(a b^{-1}\right) z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $a b^{-1} \in \mathbb{R}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}} \in \mathscr{D}^{*}$ and by Theorem 44.2, \mathscr{D}^{*} is a subgroup of \mathscr{D}.

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form $z^{\prime}=a z$ where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^{*} of \mathscr{D}. The rotations about the origin (of the form $z^{\prime}=a z$ where $|a|=1$) form a subgroup \mathscr{R}_{0} of \mathscr{D}. Both \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Proof. For central dilations, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{D}^{*}. We see in the proof of Theorem 46.2 that $D_{b}^{-1}=D_{b^{-1}}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a} \circ D_{b^{-1}}: z^{\prime}=a\left(b^{-1} z\right)=\left(a b^{-1}\right) z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $a b^{-1} \in \mathbb{R}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}} \in \mathscr{D}^{*}$ and by Theorem 44.2, \mathscr{D}^{*} is a subgroup of \mathscr{D}.

For rotations about the origin, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{R}_{0} (so that $|a|=|b|=1)$. Then, as above, $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}}$ and since
$\left|a b^{-1}\right|=|a|\left|b^{-1}\right|=1$ then $D_{a} \circ\left(D_{b}\right)^{-1} \in \mathscr{R}_{0}$ and by Theorem 44.2, \mathscr{R}_{0} is a subgroup of \mathscr{D}.

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form $z^{\prime}=a z$ where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^{*} of \mathscr{D}. The rotations about the origin (of the form $z^{\prime}=a z$ where $|a|=1$) form a subgroup \mathscr{R}_{0} of \mathscr{D}. Both \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Proof. For central dilations, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{D}^{*}. We see in the proof of Theorem 46.2 that $D_{b}^{-1}=D_{b^{-1}}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a} \circ D_{b^{-1}}: z^{\prime}=a\left(b^{-1} z\right)=\left(a b^{-1}\right) z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $a b^{-1} \in \mathbb{R}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}} \in \mathscr{D}^{*}$ and by Theorem 44.2, \mathscr{D}^{*} is a subgroup of \mathscr{D}.

For rotations about the origin, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{R}_{0} (so that $|a|=|b|=1)$. Then, as above, $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}}$ and since $\left|a b^{-1}\right|=|a|\left|b^{-1}\right|=1$ then $D_{a} \circ\left(D_{b}\right)^{-1} \in \mathscr{R}_{0}$ and by Theorem 44.2, \mathscr{R}_{0} is a subgroup of \mathscr{D}.

Since \mathscr{D} is Abelian then \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Theorem 46.3. Groups of Central Dilations and Rotations

Theorem 46.3. Groups of Central Dilations and Rotations.
The central dilations (of the form $z^{\prime}=a z$ where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^{*} of \mathscr{D}. The rotations about the origin (of the form $z^{\prime}=a z$ where $|a|=1$) form a subgroup \mathscr{R}_{0} of \mathscr{D}. Both \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Proof. For central dilations, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{D}^{*}. We see in the proof of Theorem 46.2 that $D_{b}^{-1}=D_{b^{-1}}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a} \circ D_{b^{-1}}: z^{\prime}=a\left(b^{-1} z\right)=\left(a b^{-1}\right) z$. Since $a, b \in \mathbb{R}$ (and are non-zero) then $a b^{-1} \in \mathbb{R}$ and so $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}} \in \mathscr{D}^{*}$ and by Theorem 44.2, \mathscr{D}^{*} is a subgroup of \mathscr{D}.

For rotations about the origin, consider D_{a} and $\left(D_{b}\right)^{-1}$ in \mathscr{R}_{0} (so that $|a|=|b|=1)$. Then, as above, $D_{a} \circ\left(D_{b}\right)^{-1}=D_{a b^{-1}}$ and since $\left|a b^{-1}\right|=|a|\left|b^{-1}\right|=1$ then $D_{a} \circ\left(D_{b}\right)^{-1} \in \mathscr{R}_{0}$ and by Theorem 44.2, \mathscr{R}_{0} is a subgroup of \mathscr{D}.

Since \mathscr{D} is Abelian then \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.
The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_{+}of direct isometries form a normal subgroup. The set \mathscr{I}_{-}of indirect isometries form a coset with respect to \mathscr{I}_{+}. Both \mathscr{I}_{+}and \mathscr{I} are non-Abelian groups.

Proof. Let $I_{1}: z^{\prime}=a z+b, I_{2}: z^{\prime}=c z+d, I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$, and $I_{4}: z^{\prime}=c^{\prime} \bar{z}+d^{\prime}$ where $|a|=|c|=\left|a^{\prime}\right|=\left|c^{\prime}\right|=1$. Then $I_{1} \circ I_{2}: z^{\prime}=a(c z+d)+b=(a c) z+(a d+b)$ $I_{1} \circ I_{3}: z^{\prime}=a\left(a^{\prime} \bar{z}+b^{\prime}\right)+b=\left(a a^{\prime}\right) \bar{z}+\left(a b^{\prime}+b\right)$ $I_{3} \circ I_{1}: z^{\prime}=a^{\prime} \overline{(a z+b)}+b^{\prime}=\left(a^{\prime} \bar{a}\right) \bar{z}+\left(a^{\prime} \bar{b}+b^{\prime}\right)$ $I_{3} \circ I_{4}: z^{\prime}=a^{\prime}\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime}=\left(a^{\prime} c^{\prime}\right) z+\left(a^{\prime} \overline{d^{\prime}}+b^{\prime}\right)$
and since $|a c|=|a||c|=1,\left|a a^{\prime}\right|=|a|\left|a^{\prime}\right|=1,\left|a^{\prime} \bar{a}\right|=\left|a^{\prime}\right||\bar{a}|=1$, and $\left|a \overline{c^{\prime}}\right|=\left|a^{\prime}\right|\left|\overline{c^{\prime}}\right|=|a|\left|c^{\prime}\right|=1$ we have each of these compositions in \mathscr{I} (and these are all possible types of compositions of elements of \mathscr{I}),

Theorem 46.4. The Group Property of Isometries

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_{+}of direct isometries form a normal subgroup. The set \mathscr{I}_{-}of indirect isometries form a coset with respect to \mathscr{I}_{+}. Both \mathscr{I}_{+}and \mathscr{I} are non-Abelian groups.

Proof. Let $I_{1}: z^{\prime}=a z+b, I_{2}: z^{\prime}=c z+d, I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$, and $I_{4}: z^{\prime}=c^{\prime} \bar{z}+d^{\prime}$ where $|a|=|c|=\left|a^{\prime}\right|=\left|c^{\prime}\right|=1$. Then

$$
\begin{aligned}
I_{1} \circ I_{2}: z^{\prime}=a(c z+d)+b & =(a c) z+(a d+b) \\
I_{1} \circ I_{3}: z^{\prime}=a\left(a^{\prime} \bar{z}+b^{\prime}\right)+b & =\left(a a^{\prime}\right) \bar{z}+\left(a b^{\prime}+b\right) \\
I_{3} \circ I_{1}: z^{\prime}=a^{\prime}(a z+b)+b^{\prime} & =\left(a^{\prime} \bar{a}\right) \bar{z}+\left(a^{\prime} \bar{b}+b^{\prime}\right) \\
I_{3} \circ I_{4}: z^{\prime}=a^{\prime}\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime} & =\left(a^{\prime} \overline{c^{\prime}}\right) z+\left(a^{\prime} \overline{d^{\prime}}+b^{\prime}\right)
\end{aligned}
$$

and since $|a c|=|a||c|=1,\left|a a^{\prime}\right|=|a|\left|a^{\prime}\right|=1,\left|a^{\prime} \bar{a}\right|=\left|a^{\prime}\right||\bar{a}|=1$, and $\left|a \overline{c^{\prime}}\right|=\left|a^{\prime}\right|\left|\overline{c^{\prime}}\right|=|a|\left|c^{\prime}\right|=1$ we have each of these compositions in \mathscr{I} (and these are all possible types of compositions of elements of $\mathscr{I}), \ldots$

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I}. As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $I_{1}: z^{\prime}=a z+b$ is $I_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $I_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed.
Notice that $I_{1} \circ I_{2} \in \mathscr{I}_{+}$and $I_{1}^{-1} \in \mathscr{I}+$ so for any $I_{1}, I_{2} \in \mathscr{I}_{+}$we must have $I_{1} \circ I_{2}^{-1} \in \mathscr{I}+$ and so by Theorem 44.4, \mathscr{I}_{+}is a subgroup of \mathscr{I} and so is a group, as claimed.

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I}. As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $I_{1}: z^{\prime}=a z+b$ is $I_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $I_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed.
Notice that $I_{1} \circ I_{2} \in \mathscr{I}_{+}$and $I_{1}^{-1} \in \mathscr{I}_{+}$so for any $I_{1}, I_{2} \in \mathscr{I}_{+}$we must have $I_{1} \circ I_{2}^{-1} \in \mathscr{I}_{+}$and so by Theorem 44.4, \mathscr{I}_{+}is a subgroup of \mathscr{I} and so is a group, as claimed.
We now show \mathscr{I}_{-}is a left coset of \mathscr{I}_{+}. Let $a^{\prime} \bar{z}+b^{\prime} \in \mathscr{I}_{-}$where $\left|a^{\prime}\right|=1$. Then $\overline{a^{\prime}} z+\overline{b^{\prime}} \in \mathscr{I}_{+}, I^{*}: z^{\prime}=\bar{z} \in \mathscr{I}_{-}$, and left coset $I^{*} \mathscr{I}_{+}$includes $I^{*} \circ\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=a^{\prime} \bar{z}+b^{\prime}$. Since $a^{\prime} \bar{z}+b^{\prime}$ is an arbitrary element of \mathscr{I}_{-}then $\mathscr{I}_{-} \subset I^{*} \mathscr{I}_{+}$. Since the cosets of \mathscr{I}_{+}partition \mathscr{I}, then $\mathscr{I}_{-}=\mathscr{I} \backslash \mathscr{I}_{+}$is a left coset of \mathscr{I}_{+}and so \mathscr{I}_{+}only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{I}_{+}is a normal subgroup of \mathscr{I}, as claimed.

Theorem 46.4 (continued 1)

Proof. ... and so composition really is a binary operation on \mathscr{I}. As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $I_{1}: z^{\prime}=a z+b$ is $I_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $I_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{I} is a group, as claimed.
Notice that $I_{1} \circ I_{2} \in \mathscr{I}_{+}$and $I_{1}^{-1} \in \mathscr{I}_{+}$so for any $I_{1}, I_{2} \in \mathscr{I}_{+}$we must have $I_{1} \circ I_{2}^{-1} \in \mathscr{I}_{+}$and so by Theorem 44.4, \mathscr{I}_{+}is a subgroup of \mathscr{I} and so is a group, as claimed.
We now show \mathscr{I}_{-}is a left coset of \mathscr{I}_{+}. Let $a^{\prime} \bar{z}+b^{\prime} \in \mathscr{I}_{-}$where $\left|a^{\prime}\right|=1$. Then $\overline{a^{\prime}} z+\overline{b^{\prime}} \in \mathscr{I}_{+}, I^{*}: z^{\prime}=\bar{z} \in \mathscr{I}_{-}$, and left coset $I^{*} \mathscr{I}_{+}$includes $I^{*} \circ\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=\overline{\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)}=a^{\prime} \bar{z}+b^{\prime}$. Since $a^{\prime} \bar{z}+b^{\prime}$ is an arbitrary element of \mathscr{I}_{-}then $\mathscr{I}_{-} \subset I^{*} \mathscr{I}_{+}$. Since the cosets of \mathscr{I}_{+}partition \mathscr{I}, then $\mathscr{I}_{-}=\mathscr{I} \backslash \mathscr{I}_{+}$is a left coset of \mathscr{I}_{+}and so \mathscr{I}_{+}only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{I}_{+}is a normal subgroup of \mathscr{I}, as claimed.

Theorem 46.4 (continued 2)

Theorem 46.4. The Group Property of Isometries.
The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_{+}of direct isometries form a normal subgroup. The set \mathscr{I}_{-}of indirect isometries form a coset with respect to \mathscr{I}_{+}. Both \mathscr{I}_{+}and \mathscr{I} are non-Abelian groups.

Proof. To establish the non-Abelian claim, notice that $I_{5}: z^{\prime}=i z$ and $I_{6}: z^{\prime}=z+1$ are in $\mathscr{I}_{+} \subset \mathscr{I}$ but $I_{5} \circ I_{6}: z^{\prime}=i z+i$ and $I_{6} \circ I_{5}: z^{\prime}=i z+1$, so $I_{5} \circ I_{6} \neq I_{6} \circ I_{5}$ and \mathscr{I}_{+}, and hence \mathscr{I}, are non Abelian, as claimed.

Corollary 46.4

Corollary 46.4. Let $A B C$ be a triangle and $A^{\prime} B^{\prime} C^{\prime}$ a triangle where $I(A)=A^{\prime}, I(B)=B^{\prime}$, and $I(C)=C^{\prime}$ for some direct isometry $I \in \mathscr{I}_{+}$. If $I_{1} \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_{1}(A), I_{1}(B), T_{1}(C)$ and vertices $I_{1}\left(A^{\prime}\right), I_{1}\left(B^{\prime}\right), I_{1}\left(C^{\prime}\right)$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_{+}$such that $J\left(I_{1}(A)\right)=I_{1}\left(A^{\prime}\right), J\left(I_{1}(B)\right)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1}\left(C^{\prime}\right)$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_{1}^{-1} \in \mathscr{I}$. Let $J=I_{1} \circ I \circ I_{1}^{-1}$. Then $J\left(I_{1}(A)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(A)\right)=I_{1} \circ I(A)=I_{1}\left(A^{\prime}\right)$, $J\left(I_{1}(B)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(B)\right)=I_{1} \circ I(A)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(C)\right)=I_{1} \circ I(C)=I_{1}\left(C^{\prime}\right)$.

Corollary 46.4

Corollary 46.4. Let $A B C$ be a triangle and $A^{\prime} B^{\prime} C^{\prime}$ a triangle where $I(A)=A^{\prime}, I(B)=B^{\prime}$, and $I(C)=C^{\prime}$ for some direct isometry $I \in \mathscr{I}_{+}$. If $I_{1} \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_{1}(A), I_{1}(B), T_{1}(C)$ and vertices $I_{1}\left(A^{\prime}\right), I_{1}\left(B^{\prime}\right), I_{1}\left(C^{\prime}\right)$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_{+}$such that $J\left(I_{1}(A)\right)=I_{1}\left(A^{\prime}\right), J\left(I_{1}(B)\right)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1}\left(C^{\prime}\right)$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_{1}^{-1} \in \mathscr{I}$. Let $J=I_{1} \circ I \circ I_{1}^{-1}$. Then $J\left(I_{1}(A)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(A)\right)=I_{1} \circ I(A)=I_{1}\left(A^{\prime}\right)$, $J\left(I_{1}(B)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(B)\right)=I_{1} \circ I(A)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(C)\right)=I_{1} \circ I(C)=I_{1}\left(C^{\prime}\right)$. So J has the desired mapping property and, since $\mathscr{I}+$ is a normal subgroup of \mathscr{I} by Theorem 46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I_{1}^{-1} here) $J \in \mathscr{I}_{+}$is the desired direct isometry.

Corollary 46.4

Corollary 46.4. Let $A B C$ be a triangle and $A^{\prime} B^{\prime} C^{\prime}$ a triangle where $I(A)=A^{\prime}, I(B)=B^{\prime}$, and $I(C)=C^{\prime}$ for some direct isometry $I \in \mathscr{I}_{+}$. If $I_{1} \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_{1}(A), I_{1}(B), T_{1}(C)$ and vertices $I_{1}\left(A^{\prime}\right), I_{1}\left(B^{\prime}\right), I_{1}\left(C^{\prime}\right)$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_{+}$such that $J\left(I_{1}(A)\right)=I_{1}\left(A^{\prime}\right), J\left(I_{1}(B)\right)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1}\left(C^{\prime}\right)$.

Proof. Since \mathscr{I} is a group by Theorem 46.4 then there is $I_{1}^{-1} \in \mathscr{I}$. Let $J=I_{1} \circ I \circ I_{1}^{-1}$. Then $J\left(I_{1}(A)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(A)\right)=I_{1} \circ I(A)=I_{1}\left(A^{\prime}\right)$, $J\left(I_{1}(B)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(B)\right)=I_{1} \circ I(A)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1} \circ I \circ I_{1}^{-1}\left(I_{1}(C)\right)=I_{1} \circ I(C)=I_{1}\left(C^{\prime}\right)$. So J has the desired mapping property and, since \mathscr{I}_{+}is a normal subgroup of \mathscr{I} by Theorem 46.4, by Theorem 45.2 (with g of Theorem 45.2 equal to I_{1}^{-1} here) $J \in \mathscr{I}_{+}$is the desired direct isometry.

