Real Analysis

Chapter V. Mappings of the Euclidean Plane

47. Similarity Transformations and Results-Proofs of Theorems

Table of contents

(1) Theorem 47.3
(2) Theorem 47.4. Similitudes are Collineations
(3) Theorem 47.6. Determination of a Similitude
(4) Theorem 47.7
(5) Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane
(6) Theorem 47.8. Group Properties of Similitudes
(7) Theorem 47.9. Condition for Direct Similarity of Triangles
(8) Theorem 47.10

Theorem 47.3

Theorem 47.3. An Auxiliary Theorem.
Given two pairs of points z_{0}, z_{1} and w_{0}, w_{1} where $\left|z_{0}-z_{1}\right|=k\left|w_{0}-w_{1}\right| \neq 0$, there is just one mapping of type \mathscr{S}_{+}and one of type \mathscr{S}_{-}which maps z_{0} to w_{0} and maps z_{1} to w_{1}.

Proof. Let $a z+b \in \mathscr{S}_{+}$with $w_{0}=a z_{0}+b$ and $w_{1}=a z_{1}+b$. Then $w_{0}-w_{1}=\left(a z_{0}+b\right)-\left(a z_{1}+b\right)=a\left(z_{0}-z_{1}\right)$ and

$$
a=\left(w_{0}-w_{1}\right) /\left(z_{0}-z_{1}\right)
$$

(this is where we use the facts that $z_{0}-z_{1} \neq 0$), so that a is uniquely determined in terms of the given $w_{0}, w_{1}, z_{0}, z_{1}$.

Theorem 47.3

Theorem 47.3. An Auxiliary Theorem.
Given two pairs of points z_{0}, z_{1} and w_{0}, w_{1} where $\left|z_{0}-z_{1}\right|=k\left|w_{0}-w_{1}\right| \neq 0$, there is just one mapping of type \mathscr{S}_{+}and one of type \mathscr{S}_{-}which maps z_{0} to w_{0} and maps z_{1} to w_{1}.

Proof. Let $a z+b \in \mathscr{S}_{+}$with $w_{0}=a z_{0}+b$ and $w_{1}=a z_{1}+b$. Then $w_{0}-w_{1}=\left(a z_{0}+b\right)-\left(a z_{1}+b\right)=a\left(z_{0}-z_{1}\right)$ and

$$
a=\left(w_{0}-w_{1}\right) /\left(z_{0}-z_{1}\right)
$$

(this is where we use the facts that $z_{0}-z_{1} \neq 0$), so that a is uniquely determined in terms of the given $w_{0}, w_{1}, z_{0}, z_{1}$. Then

$$
b=w_{0}-a z_{0}=w_{0}-z_{0} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}
$$

Theorem 47.3

Theorem 47.3. An Auxiliary Theorem.

Given two pairs of points z_{0}, z_{1} and w_{0}, w_{1} where $\left|z_{0}-z_{1}\right|=k\left|w_{0}-w_{1}\right| \neq 0$, there is just one mapping of type \mathscr{S}_{+}and one of type \mathscr{S}_{-}which maps z_{0} to w_{0} and maps z_{1} to w_{1}.

Proof. Let $a z+b \in \mathscr{S}_{+}$with $w_{0}=a z_{0}+b$ and $w_{1}=a z_{1}+b$. Then $w_{0}-w_{1}=\left(a z_{0}+b\right)-\left(a z_{1}+b\right)=a\left(z_{0}-z_{1}\right)$ and

$$
a=\left(w_{0}-w_{1}\right) /\left(z_{0}-z_{1}\right)
$$

(this is where we use the facts that $z_{0}-z_{1} \neq 0$), so that a is uniquely determined in terms of the given $w_{0}, w_{1}, z_{0}, z_{1}$. Then

$$
b=w_{0}-a z_{0}=w_{0}-z_{0} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}
$$

and b is uniquely determined (also, ...

Theorem 47.3 (continued)

Proof (continued).

$$
\begin{gathered}
b=w_{1}-a z_{1}=w_{1}-z_{1} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}=\frac{w_{1}\left(z_{0}-z_{1}\right)-z_{1}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}} \\
=\frac{w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}}=\frac{z_{0} w_{0}-z_{0} w_{0}+w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}} \\
=\frac{w_{0}\left(z_{0}-z_{1}\right)-z_{0}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}}=w_{0}-z_{0} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}
\end{gathered}
$$

as expected).

Theorem 47.3 (continued)

Proof (continued).

$$
\begin{aligned}
& b=w_{1}-a z_{1}=w_{1}-z_{1} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}=\frac{w_{1}\left(z_{0}-z_{1}\right)-z_{1}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}} \\
&=\frac{w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}}=\frac{z_{0} w_{0}-z_{0} w_{0}+w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}} \\
&=\frac{w_{0}\left(z_{0}-z_{1}\right)-z_{0}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}}=w_{0}-z_{0} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}
\end{aligned}
$$

as expected).
Similarly, for $c \bar{z}+d \in \mathscr{S}-$ with $w_{0}=c \bar{z}_{0}+d$ and $w_{1}=c \bar{z}_{1}+d$. Then $w_{0}-w_{1}=\left(c \bar{z}_{0}+d\right)-\left(c \bar{z}_{1}+d\right)=c\left(\bar{z}_{0}-\bar{z}_{1}\right)$ and
$c=\left(w_{0}-w_{1}\right) /\left(\bar{z}_{0}-\bar{z}_{1}\right)$ so that c is uniquely determined in terms of the given $w_{0}, w_{1}, z_{0}, z_{1}$. Then $d=w_{0}-c \bar{z}_{0}=w_{0}-\bar{z}_{0}\left(w_{0}-w_{1}\right) /\left(\bar{z}_{0}-\bar{z}_{1}\right)$ and d is uniquely determined.

Theorem 47.3 (continued)

Proof (continued).

$$
\begin{aligned}
b=w_{1} & -a z_{1}=w_{1}-z_{1} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}=\frac{w_{1}\left(z_{0}-z_{1}\right)-z_{1}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}} \\
& =\frac{w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}}=\frac{z_{0} w_{0}-z_{0} w_{0}+w_{1} z_{0}-z_{1} w_{0}}{z_{0}-z_{1}} \\
& =\frac{w_{0}\left(z_{0}-z_{1}\right)-z_{0}\left(w_{0}-w_{1}\right)}{z_{0}-z_{1}}=w_{0}-z_{0} \frac{w_{0}-w_{1}}{z_{0}-z_{1}}
\end{aligned}
$$

as expected).
Similarly, for $c \bar{z}+d \in \mathscr{S}_{-}$with $w_{0}=c \bar{z}_{0}+d$ and $w_{1}=c \bar{z}_{1}+d$. Then $w_{0}-w_{1}=\left(c \bar{z}_{0}+d\right)-\left(c \bar{z}_{1}+d\right)=c\left(\bar{z}_{0}-\bar{z}_{1}\right)$ and $c=\left(w_{0}-w_{1}\right) /\left(\bar{z}_{0}-\bar{z}_{1}\right)$ so that c is uniquely determined in terms of the given $w_{0}, w_{1}, z_{0}, z_{1}$. Then $d=w_{0}-c \bar{z}_{0}=w_{0}-\bar{z}_{0}\left(w_{0}-w_{1}\right) /\left(\bar{z}_{0}-\bar{z}_{1}\right)$ and d is uniquely determined.

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations.

Every similitude of the Gauss plane \mathbb{C} is a collineation.
Proof. Let $z \mapsto z^{\prime}$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C}. Choose three points u, v, w on ℓ with v between u and w on ℓ. Then by Lemma 43.A, $|v-w|+|w-u|=|w-u|$. Since the mapping $z \mapsto z^{\prime}$ is a similitude the for some $k>0$ we have $\left|v^{\prime}-w^{\prime}\right|=k|v-w|$,
$\left|v^{\prime}-u^{\prime}\right|=k|v-u|,\left|w^{\prime}-u^{\prime}\right|=k|w-u|$, and so
$k^{-1}\left|v^{\prime}-w^{\prime}\right|+k^{-1}\left|w^{\prime}-u^{\prime}\right|=k^{-1}\left|w^{\prime}-u^{\prime}\right|$ or
$v^{\prime}-w^{\prime}\left|+\left|w^{\prime}-u^{\prime}\right|=\left|w^{\prime}-u^{\prime}\right|\right.$.

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations.

Every similitude of the Gauss plane \mathbb{C} is a collineation.
Proof. Let $z \mapsto z^{\prime}$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C}. Choose three points u, v, w on ℓ with v between u and w on ℓ. Then by Lemma 43.A, $|v-w|+|w-u|=|w-u|$. Since the mapping $z \mapsto z^{\prime}$ is a similitude the for some $k>0$ we have $\left|v^{\prime}-w^{\prime}\right|=k|v-w|$, $\left|v^{\prime}-u^{\prime}\right|=k|v-u|,\left|w^{\prime}-u^{\prime}\right|=k|w-u|$, and so $k^{-1}\left|v^{\prime}-w^{\prime}\right|+k^{-1}\left|w^{\prime}-u^{\prime}\right|=k^{-1}\left|w^{\prime}-u^{\prime}\right|$ or $\left|v^{\prime}-w^{\prime}\right|+\left|w^{\prime}-u^{\prime}\right|=\left|w^{\prime}-u^{\prime}\right|$. Also by Lemma 43.A, $u^{\prime}, v^{\prime}, w^{\prime}$ are collinear (say they lie on line ℓ^{\prime}) with v^{\prime} between u^{\prime} and w^{\prime} on the line. That is, the collineation maps line ℓ to line ℓ^{\prime}. Since ℓ is an arbitrary line in \mathbb{C}, then the result follows.

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations.

Every similitude of the Gauss plane \mathbb{C} is a collineation.
Proof. Let $z \mapsto z^{\prime}$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C}. Choose three points u, v, w on ℓ with v between u and w on ℓ. Then by Lemma 43.A, $|v-w|+|w-u|=|w-u|$. Since the mapping $z \mapsto z^{\prime}$ is a similitude the for some $k>0$ we have $\left|v^{\prime}-w^{\prime}\right|=k|v-w|$, $\left|v^{\prime}-u^{\prime}\right|=k|v-u|,\left|w^{\prime}-u^{\prime}\right|=k|w-u|$, and so $k^{-1}\left|v^{\prime}-w^{\prime}\right|+k^{-1}\left|w^{\prime}-u^{\prime}\right|=k^{-1}\left|w^{\prime}-u^{\prime}\right|$ or $\left|v^{\prime}-w^{\prime}\right|+\left|w^{\prime}-u^{\prime}\right|=\left|w^{\prime}-u^{\prime}\right|$. Also by Lemma 43.A, $u^{\prime}, v^{\prime}, w^{\prime}$ are collinear (say they lie on line ℓ^{\prime}) with v^{\prime} between u^{\prime} and w^{\prime} on the line. That is, the collineation maps line ℓ to line ℓ^{\prime}. Since ℓ is an arbitrary line in \mathbb{C}, then the result follows.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_{0}, z_{1}, z_{2} are noncollinear points with respective images w_{0}, w_{1}, w_{2} then for any z in the plane, the image of z is uniquely determined from w_{0}, w_{1}, w_{2}.

Proof. Let z_{0}, z_{1}, z_{2} be noncollinear points in the Gauss plane \mathbb{C}. By Lemma 43.A we have: $\left|z_{0}-z_{1}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{2}\right|$, $\left|z_{0}-z_{1}\right|+\left|z_{0}-z_{2}\right|<\left|z_{1}-z_{2}\right|$, and $\left|z_{0}-z_{2}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{1}\right|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{1}\right|$, $\left|z_{1}-z_{2}\right|=k\left|w_{1}-w_{2}\right|$, and $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{2}\right|$ for some $k>0$ since we have a similitude.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_{0}, z_{1}, z_{2} are noncollinear points with respective images w_{0}, w_{1}, w_{2} then for any z in the plane, the image of z is uniquely determined from w_{0}, w_{1}, w_{2}.

Proof. Let z_{0}, z_{1}, z_{2} be noncollinear points in the Gauss plane \mathbb{C}. By Lemma 43.A we have: $\left|z_{0}-z_{1}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{2}\right|$, $\left|z_{0}-z_{1}\right|+\left|z_{0}-z_{2}\right|<\left|z_{1}-z_{2}\right|$, and $\left|z_{0}-z_{2}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{1}\right|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{1}\right|$, $\left|z_{1}-z_{2}\right|=k\left|w_{1}-w_{2}\right|$, and $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{2}\right|$ for some $k>0$ since we have a similitude. So, substituting into the three inequalities and dividing by k, we have $\left|w_{0}-w_{1}\right|+\left|w_{1}-w_{2}\right|<\left|w_{0}-w_{2}\right|$,
$\left|w_{0}-w_{1}\right|+\left|w_{0}-w_{2}\right|<\left|w_{1}-w_{2}\right|$, and $\left|w_{0}-w_{2}\right|+\left|w_{1}-w_{2}\right|<\left|w_{0}-w_{1}\right|$
and the points w_{0}, w_{1}, w_{2} are not collinear.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_{0}, z_{1}, z_{2} are noncollinear points with respective images w_{0}, w_{1}, w_{2} then for any z in the plane, the image of z is uniquely determined from w_{0}, w_{1}, w_{2}.

Proof. Let z_{0}, z_{1}, z_{2} be noncollinear points in the Gauss plane \mathbb{C}. By Lemma 43.A we have: $\left|z_{0}-z_{1}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{2}\right|$, $\left|z_{0}-z_{1}\right|+\left|z_{0}-z_{2}\right|<\left|z_{1}-z_{2}\right|$, and $\left|z_{0}-z_{2}\right|+\left|z_{1}-z_{2}\right|<\left|z_{0}-z_{1}\right|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{1}\right|$, $\left|z_{1}-z_{2}\right|=k\left|w_{1}-w_{2}\right|$, and $\left|z_{0}-z_{2}\right|=k\left|w_{0}-w_{2}\right|$ for some $k>0$ since we have a similitude. So, substituting into the three inequalities and dividing by k, we have $\left|w_{0}-w_{1}\right|+\left|w_{1}-w_{2}\right|<\left|w_{0}-w_{2}\right|$, $\left|w_{0}-w_{1}\right|+\left|w_{0}-w_{2}\right|<\left|w_{1}-w_{2}\right|$, and $\left|w_{0}-w_{2}\right|+\left|w_{1}-w_{2}\right|<\left|w_{0}-w_{1}\right|$ and the points w_{0}, w_{1}, w_{2} are not collinear.

Theorem 47.6. Determination of a Similitude (continued)

Proof (continued). Let z be a point \mathbb{C} other than z_{0}, z_{1}, z_{2}. Consider the circles C_{i} with (respective) centers z_{i} and radii $\left|z-z_{i}\right|$ for $i=0,1,2$. Then the three circles intersect at point z. Since the centers are not collinear, then by Lemma $43 . \mathrm{B} z$ is the only point on the three circles. That is, point z is uniquely determined by the three distances $\left|z-z_{0}\right|$, $\left|z-z_{1}\right|$, and $\left|z-z_{2}\right|$. Now triangle $w_{0} w_{1} w_{2}$ is similar to triangle $z_{0} z_{1} z_{2}$ and similarly there is a unique point on the intersection of the three circles C_{i}^{\prime} centered at w_{i} with radii $k\left|z-z_{i}\right|$ for $i=0,1,2$; denote the unique point as w. Since the mapping is a similitude then the image of circle C_{i} is circle C_{i}^{\prime} for $i=0,1,2$ and we must have w as the image of z. Since z is an arbitrary point in \mathbb{C} (distinct from z_{0}, z_{1}, z_{2}) then the similitude on \mathbb{C} is uniquely determined.

Theorem 47.6. Determination of a Similitude (continued)

Proof (continued). Let z be a point \mathbb{C} other than z_{0}, z_{1}, z_{2}. Consider the circles C_{i} with (respective) centers z_{i} and radii $\left|z-z_{i}\right|$ for $i=0,1,2$. Then the three circles intersect at point z. Since the centers are not collinear, then by Lemma 43.B z is the only point on the three circles. That is, point z is uniquely determined by the three distances $\left|z-z_{0}\right|$, $\left|z-z_{1}\right|$, and $\left|z-z_{2}\right|$. Now triangle $w_{0} w_{1} w_{2}$ is similar to triangle $z_{0} z_{1} z_{2}$ and similarly there is a unique point on the intersection of the three circles C_{i}^{\prime} centered at w_{i} with radii $k\left|z-z_{i}\right|$ for $i=0,1,2$; denote the unique point as w. Since the mapping is a similitude then the image of circle C_{i} is circle C_{i}^{\prime} for $i=0,1,2$ and we must have w as the image of z. Since z is an arbitrary point in \mathbb{C} (distinct from z_{0}, z_{1}, z_{2}) then the similitude on \mathbb{C} is uniquely determined.

Theorem 47.7

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_{0} and z_{1} onto the given points w_{0} and w_{1} where $\left|w_{0}-w_{1}\right|=k\left|z_{0}-z_{1}\right| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}. We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_{0} and z_{1}. Consider circle C_{0} centered at z_{0} with radius $\left|z-z_{0}\right|$ and circle C_{1} centered at z_{1} with radius $\left|z-z_{1}\right|$. Since z lies on both C_{0} and C_{1} and z is not collinear with the centers of z_{0} and z_{1} then these circles intersect at two points.

Theorem 47.7

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_{0} and z_{1} onto the given points w_{0} and w_{1} where $\left|w_{0}-w_{1}\right|=k\left|z_{0}-z_{1}\right| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}. We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_{0} and z_{1}. Consider circle C_{0} centered at z_{0} with radius $\left|z-z_{0}\right|$ and circle C_{1} centered at z_{1} with radius $\left|z-z_{1}\right|$. Since z lies on both C_{0} and C_{1} and z is not collinear with the centers of z_{0} and z_{1} then these circles intersect at two points. Similarly, circle C_{0}^{\prime} centered at w_{0} with radius $k^{-1}\left|z-z_{0}\right|$ and circle C_{1}^{\prime} centered at w_{1} with radius $k^{-1}\left|z-z_{1}\right|$ intersect in two points. Since the mapping is a similitude, then z must be mapped to either one or the other of the two points on circles C_{0}^{\prime} and C_{1}^{\prime}. So there are at most two such similitudes, and the result follows.

Theorem 47.7

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_{0} and z_{1} onto the given points w_{0} and w_{1} where $\left|w_{0}-w_{1}\right|=k\left|z_{0}-z_{1}\right| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}. We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_{0} and z_{1}. Consider circle C_{0} centered at z_{0} with radius $\left|z-z_{0}\right|$ and circle C_{1} centered at z_{1} with radius $\left|z-z_{1}\right|$. Since z lies on both C_{0} and C_{1} and z is not collinear with the centers of z_{0} and z_{1} then these circles intersect at two points. Similarly, circle C_{0}^{\prime} centered at w_{0} with radius $k^{-1}\left|z-z_{0}\right|$ and circle C_{1}^{\prime} centered at w_{1} with radius $k^{-1}\left|z-z_{1}\right|$ intersect in two points. Since the mapping is a similitude, then z must be mapped to either one or the other of the two points on circles C_{0}^{\prime} and C_{1}^{\prime}. So there are at most two such similitudes, and the result follows.

Theorem 47.2. The Main Theorem on Similitudes of the

 Gauss PlaneTheorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.
The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_{+}and \mathscr{S}_{-}. Th class \mathscr{S}_{+}consists of all similitudes of the form $z^{\prime}=a z+b$ and the class \mathscr{S}_{-}of all similitudes of the form $z^{\prime}=c \bar{z}+d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C}. Let z_{0} and z_{1} be any distinct points in \mathbb{C} with images w_{0} and w_{1}, respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.

The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_{+}and \mathscr{S}_{-}. Th class \mathscr{S}_{+}consists of all similitudes of the form $z^{\prime}=a z+b$ and the class \mathscr{S}_{-}of all similitudes of the form $z^{\prime}=c \bar{z}+d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C}. Let z_{0} and z_{1} be any distinct points in \mathbb{C} with images w_{0} and w_{1}, respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}. By Theorem 47.7, there are only two possibilities for the similitude. So the similitude must be in either \mathscr{S}_{+}or and hence every isometry of \mathbb{C} is contained in either \mathscr{S}_{+}or \mathscr{S}_{-}, as claimed.

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.
The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_{+}and \mathscr{S}_{-}. Th class \mathscr{S}_{+}consists of all similitudes of the form $z^{\prime}=a z+b$ and the class \mathscr{S}_{-}of all similitudes of the form $z^{\prime}=c \bar{z}+d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C}. Let z_{0} and z_{1} be any distinct points in \mathbb{C} with images w_{0} and w_{1}, respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_{+}and one in \mathscr{S}_{-}. By Theorem 47.7, there are only two possibilities for the similitude. So the similitude must be in either \mathscr{S}_{+}or \mathscr{S}_{-}and hence every isometry of \mathbb{C} is contained in either \mathscr{S}_{+}or \mathscr{S}_{-}, as claimed.

Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes.

The similitudes form a group \mathscr{S}, the direct similitudes forming a normal subgroup \mathscr{S}_{+}. The opposite similitudes form a coset \mathscr{S}_{-}with respect to \mathscr{S}_{+}. Neither \mathscr{S} nor \mathscr{S}_{+}is Abelian. The group of isometries \mathscr{I} is a normal subgroup of \mathscr{S}, and \mathscr{I}_{+}is a normal subgroup of \mathscr{S}_{+}.

Proof. Let $S_{1}: z^{\prime}=a z+b, S_{2}: z^{\prime}=c z+d, S_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$, and $S_{4}: z^{\prime}=c^{\prime} \bar{z}+d^{\prime}$ where $a, c, a^{\prime}, c^{\prime}$ are nonzero. Then

$$
\begin{aligned}
S_{1} \circ S_{2}: z^{\prime}=a(c z+d)+b & =(a c) z+(a d+b) \\
S_{1} \circ S_{3}: z^{\prime}=a\left(a^{\prime} \bar{z}+b^{\prime}\right)+b & =\left(a a^{\prime}\right) \bar{z}+\left(a b^{\prime}+b\right) \\
S_{3} \circ S_{1}: z^{\prime}=a^{\prime}(a z+b)+b^{\prime} & =\left(a^{\prime} \bar{a}\right) \bar{z}+\left(a^{\prime} \bar{b}+b^{\prime}\right) \\
S_{3} \circ S_{4}: z^{\prime}=a^{\prime}\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime} & =\left(a^{\prime} c^{\prime}\right) z+\left(a^{\prime} d^{\prime}+b^{\prime}\right)
\end{aligned}
$$

and we have each of these compositions in \mathscr{S} (and these are all possible types of compositions of elements of \mathscr{S}), and so composition really is a binary operation on

Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes.

The similitudes form a group \mathscr{S}, the direct similitudes forming a normal subgroup \mathscr{S}_{+}. The opposite similitudes form a coset \mathscr{S}_{-}with respect to \mathscr{S}_{+}. Neither \mathscr{S} nor \mathscr{S}_{+}is Abelian. The group of isometries \mathscr{I} is a normal subgroup of \mathscr{S}, and \mathscr{I}_{+}is a normal subgroup of \mathscr{S}_{+}.

Proof. Let $S_{1}: z^{\prime}=a z+b, S_{2}: z^{\prime}=c z+d, S_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$, and $S_{4}: z^{\prime}=c^{\prime} \bar{z}+d^{\prime}$ where $a, c, a^{\prime}, c^{\prime}$ are nonzero. Then

$$
\begin{aligned}
& S_{1} \circ S_{2}: z^{\prime}=a(c z+d)+b=(a c) z+(a d+b) \\
& S_{1} \circ S_{3}: z^{\prime}=a\left(a^{\prime} \bar{z}+b^{\prime}\right)+b=\left(a a^{\prime}\right) \bar{z}+\left(a b^{\prime}+b\right) \\
& S_{3} \circ S_{1}: z^{\prime}=a^{\prime}(a z+b) \\
& S_{3} \circ b_{4}: z^{\prime}=a^{\prime}\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime}=\left(a^{\prime} \bar{a}\right) \bar{z}+\left(a^{\prime} \overline{c^{\prime}}\right) z+\left(a^{\prime}\right) \\
&\left.d^{\prime}+b^{\prime}\right)
\end{aligned}
$$

and we have each of these compositions in \mathscr{S} (and these are all possible types of compositions of elements of \mathscr{S}), and so composition really is a binary operation on \mathscr{S}.

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $S_{1}: z^{\prime}=a z+b$ is $S_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $S_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $S_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_{1} \circ S_{2} \in \mathscr{S}_{+}$and $S_{1}^{-1} \in \mathscr{S}_{+}$so for any $S_{1}, S_{2} \in \mathscr{S}_{+}$we must have $S_{1} \circ S_{2}^{-1} \in \mathscr{S}_{+}$and so by Theorem 44.4, \mathscr{S}_{+}is a subgroup of \mathscr{S} and so is a group, as claimed.

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $S_{1}: z^{\prime}=a z+b$ is $S_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $S_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $S_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_{1} \circ S_{2} \in \mathscr{S}_{+}$and $S_{1}^{-1} \in \mathscr{S}_{+}$so for any $S_{1}, S_{2} \in \mathscr{S}_{+}$we must have $S_{1} \circ S_{2}^{-1} \in \mathscr{S}_{+}$and so by Theorem 44.4, \mathscr{S}_{+}is a subgroup of \mathscr{S} and so is a group, as claimed.

We now show \mathscr{S}_{-}is a left coset of \mathscr{S}_{+}. Let $a^{\prime} \bar{z}+b^{\prime} \in \mathscr{S}_{-}$where $a \neq 0$. Then $a^{\prime} z+\overline{b^{\prime}} \in \mathscr{S}_{+}, S^{*}: z^{\prime}=\bar{z} \in \mathscr{S}_{-}$, and left coset $S^{*} \mathscr{S}_{+}$includes $S^{*} \circ\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=a^{\prime} \bar{z}+b^{\prime}$. Since $a^{\prime} \bar{z}+b^{\prime}$ is an arbitrary element of \mathscr{S}_{-}then $\mathscr{S}_{-} \subset S^{*} \mathscr{S}_{+}$. Since the cosets of \mathscr{S}_{+}partition then $\mathscr{S}_{-}=\mathscr{S} \backslash \mathscr{S}_{+}$is a left coset of \mathscr{S}_{+}and so \mathscr{S}_{+}only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{S}_{+}is a normal subgroup of \mathscr{S}, as claimed

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is $z^{\prime}=z$ and The Identity Law holds. The inverse of $S_{1}: z^{\prime}=a z+b$ is $S_{1}^{-1}: z^{\prime}=a^{-1} z-a^{-1} b$ and the inverse of $S_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime}$ is $S_{3}^{-1}: \overline{\left(a^{\prime}\right)^{-1}} \bar{z}-\overline{\left(a^{\prime}\right)^{-1}} \overline{b^{\prime}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_{1} \circ S_{2} \in \mathscr{S}_{+}$and $S_{1}^{-1} \in \mathscr{S}_{+}$so for any $S_{1}, S_{2} \in \mathscr{S}_{+}$we must have $S_{1} \circ S_{2}^{-1} \in \mathscr{S}_{+}$and so by Theorem 44.4, \mathscr{S}_{+}is a subgroup of \mathscr{S} and so is a group, as claimed.

We now show \mathscr{S}_{-}is a left coset of \mathscr{S}_{+}. Let $a^{\prime} \bar{z}+b^{\prime} \in \mathscr{S}_{-}$where $a \neq 0$. Then $\overline{a^{\prime}} z+\overline{b^{\prime}} \in \mathscr{S}_{+}, S^{*}: z^{\prime}=\bar{z} \in \mathscr{S}_{-}$, and left coset $S^{*} \mathscr{S}_{+}$includes $S^{*} \circ\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)=\overline{\left(\overline{a^{\prime}} z+\overline{b^{\prime}}\right)}=a^{\prime} \bar{z}+b^{\prime}$. Since $a^{\prime} \bar{z}+b^{\prime}$ is an arbitrary element of \mathscr{S}_{-}then $\mathscr{S}_{-} \subset S^{*} \mathscr{S}_{+}$. Since the cosets of \mathscr{S}_{+}partition \mathscr{S}, then $\mathscr{S}_{-}=\mathscr{S} \backslash \mathscr{S}_{+}$is a left coset of \mathscr{S}_{+}and so \mathscr{S}_{+}only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{S}_{+}is a normal subgroup of \mathscr{S}, as claimed.

Theorem 47.8 (continued 2)

Proof (continued). To establish the non-Abelian claim, notice that $S_{5}: z^{\prime}=i z$ and $S_{6}: z^{\prime}=z+1$ are in $\mathscr{S}_{+} \subset \mathscr{S}$ but $S_{5} \circ S_{6}: z^{\prime}=i z+i$ and $S_{6} \circ S_{5}: z^{\prime}=i z+1$, so $S_{5} \circ S_{6} \neq S_{6} \circ S_{5}$ and \mathscr{S}_{+}, and hence \mathscr{S}, are non Abelian, as claimed.

We now show that \mathscr{I}_{+}is a normal subgroup of \mathscr{S}_{+}. Let $I: a^{\prime}=a z+b \in \mathscr{I}_{+}$where $|a|=1$ and let $S: z^{\prime}=c z+d \in \mathscr{S}_{+}$where $c \neq 0$. Then $S^{-1}: z^{\prime}=c^{-1} z-c^{-1} d$ and
$S^{-1} \circ I \circ S=S^{-1} \circ I(c z+d)=s^{-1}(a(c z+d)+b)=S^{-1}((a c) z+(a d+b))$

$$
=c^{-1}((a c) z+(a d+b))-c^{-1} d=a z+c^{-1}(a d+b)-c^{-1} d \in \mathscr{I}_{+}
$$

since $|a|=1$. Since I is an arbitrary element of \mathscr{I}_{+}and S is an arbitrary element of \mathscr{S}_{+}, then by Theorem $45.2 \mathscr{I}_{+}$is a normal subgroup of \mathscr{S}_{+}, as claimed.

Theorem 47.8 (continued 2)

Proof (continued). To establish the non-Abelian claim, notice that $S_{5}: z^{\prime}=i z$ and $S_{6}: z^{\prime}=z+1$ are in $\mathscr{S}_{+} \subset \mathscr{S}$ but $S_{5} \circ S_{6}: z^{\prime}=i z+i$ and $S_{6} \circ S_{5}: z^{\prime}=i z+1$, so $S_{5} \circ S_{6} \neq S_{6} \circ S_{5}$ and \mathscr{S}_{+}, and hence \mathscr{S}, are non Abelian, as claimed.

We now show that \mathscr{I}_{+}is a normal subgroup of \mathscr{S}_{+}. Let $I: a^{\prime}=a z+b \in \mathscr{I}_{+}$where $|a|=1$ and let $S: z^{\prime}=c z+d \in \mathscr{S}_{+}$where $c \neq 0$. Then $S^{-1}: z^{\prime}=c^{-1} z-c^{-1} d$ and

$$
\begin{aligned}
& S^{-1} \circ I \circ S=S^{-1} \circ I(c z+d)=s^{-1}(a(c z+d)+b)=S^{-1}((a c) z+(a d+b)) \\
& =c^{-1}((a c) z+(a d+b))-c^{-1} d=a z+c^{-1}(a d+b)-c^{-1} d \in \mathscr{I}_{+}
\end{aligned}
$$

since $|a|=1$. Since I is an arbitrary element of \mathscr{I}_{+}and S is an arbitrary element of \mathscr{S}_{+}, then by Theorem 45.2 \mathscr{I}_{+}is a normal subgroup of \mathscr{S}_{+}, as claimed.

Theorem 47.8 (continued 3)

Proof (continued). We now show that \mathscr{I} is a normal subgroup of \mathscr{S}. With $I_{1}: z^{\prime}=a z+b, I_{3}: z^{\prime}=a^{\prime} \bar{z}+b^{\prime} \in \mathscr{I}$ where $|a|=\left|a^{\prime}\right|=1$ and $S_{1}: z^{\prime}=c z+d, S_{3}: z^{\prime}=c^{\prime} \bar{z}+d \in \mathscr{S}$ where $c \neq 0 \neq c^{\prime}$, we have $S_{1}^{-1}: z^{\prime}=c^{-1} z-c^{-1} d$ and $S_{3}^{-1}: z^{\prime}=\overline{\left(c^{\prime}\right)^{-1}} \bar{z}-\overline{\left(c^{\prime}\right)^{-1}} \overline{d^{\prime}}$. We know $S_{1}^{-1} \circ I_{1} \circ S_{1} \in \mathscr{I}_{+} \subset \mathscr{I}$ from above. We also have

$$
\begin{gathered}
S_{1}^{-1} \circ I_{3} \circ S_{1}=S_{1}^{-1} \circ I_{3}(c z+d)=S_{1}^{-1}\left(a^{\prime}(c z+d)\right. \\
\left.=b_{1}^{\prime}\right) \\
=S_{1}^{-1}\left(\left(a^{\prime} \bar{c}\right) \bar{z}+c^{-1}\left(a^{\prime} \bar{d}+b^{\prime}\right)-c^{-1} d \in \mathscr{I}_{-} \subset \mathscr{I}\right.
\end{gathered}
$$

since $\left|c^{-1} a^{\prime} \bar{c}\right|=|c|^{-1}\left|a^{\prime}\right||\bar{c}|=\left|a^{\prime}\right|=1$,

$$
\begin{gathered}
S_{3}^{-1} \circ I_{1} \circ S_{3}=S_{3}^{-1} \circ I_{1}\left(c^{\prime} \bar{z}+d^{\prime}\right)=S_{3}\left(a\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime}\right) \\
=S_{3}^{-1}\left(\left(a c^{\prime}\right) \bar{z}+\left(a d^{\prime}+b\right)\right)=\overline{\left(c^{\prime}\right)^{-1}\left(\left(a c^{\prime}\right) \bar{z}+\left(a d^{\prime}+b\right)\right)}-\overline{\left(c^{\prime}\right)^{-1}} \overline{d^{\prime}} \\
=\overline{\left(c^{\prime}\right)^{-1} a c^{\prime} z}+\overline{\left(c^{\prime}\right)^{-1}\left(a d^{\prime}+b\right)}-\overline{\left(c^{\prime}\right)^{-1}} \overline{d^{\prime}} \in \mathscr{I}+\subset \mathscr{I}
\end{gathered}
$$

since $\left|\overline{\left(c^{\prime}\right)^{-1} a c^{\prime}}\right|=\left|c^{\prime}\right|^{-1}|a|\left|c^{\prime}\right|=|a|=1$,

Theorem 47.8 (continued 4)

Proof (continued).

$$
\begin{aligned}
& S_{3}^{-1} \circ I_{3} \circ S_{3}=S_{3}^{-1} \circ I_{3}\left(c^{\prime} \bar{z}+d^{\prime}\right)=S_{3}^{-1}\left(a^{\prime}\left(c^{\prime} \bar{z}+d^{\prime}\right)+b^{\prime}\right) \\
& =S_{3}^{-1}\left(\left(a^{\prime} \overline{c^{\prime}} z+\left(a^{\prime} \overline{d^{\prime}}+b^{\prime}\right)\right)-\overline{\left(c^{\prime}\right)^{-1}} \overline{b^{\prime}}\right. \\
& =\left(\overline{\left(c^{\prime}\right)^{-1}} \overline{a^{\prime}} c^{\prime}\right) \bar{z}+\overline{\left(c^{\prime}\right)^{-1}}\left(\overline{a^{\prime}} d^{\prime}+\overline{b^{\prime}}\right)-\overline{\left(c^{\prime}\right)^{-1}} \overline{b^{\prime}} \in \mathscr{I}_{-} \subset \mathscr{I}
\end{aligned}
$$

since $\left|\overline{\left(c^{\prime}\right)^{-1}} \overline{a^{\prime}} c^{\prime}\right|=|c|^{-1}\left|a^{\prime}\right||c|=|a|=1$. Since this covers all possible type of elements of \mathscr{S} and \mathscr{I}, we have $S^{-1} \circ I \circ S \in \mathscr{I}$ for all $S \in \mathscr{S}$ and $I \in \mathscr{I}$ and so by Theorem 45.2, \mathscr{I} is a normal subgroup of \mathscr{S}, as claimed.

Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles.
The vertices $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_{1}, w_{2}, w_{3} \in \mathbb{C}$ of another triangle if and only if

$$
\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}
$$

Proof. First, suppose there is a direct similitude $S: z^{\prime}=a z+b$. Then

$$
\begin{aligned}
\frac{w_{2}-w_{1}}{w_{3}-w_{1}} & =\frac{S\left(z_{2}\right)-S\left(z_{1}\right)}{S\left(z_{3}\right)-S\left(z_{1}\right)}=\frac{\left(a z_{2}+b\right)-\left(a z_{1}+b\right)}{\left(a z_{3}+b\right)-\left(a z_{1}+b\right)} \\
& =\frac{a z_{2}-a z_{1}}{a z_{3}-a z_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}},
\end{aligned}
$$

Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles.
The vertices $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_{1}, w_{2}, w_{3} \in \mathbb{C}$ of another triangle if and only if

$$
\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}
$$

Proof. First, suppose there is a direct similitude $S: z^{\prime}=a z+b$. Then

$$
\begin{aligned}
\frac{w_{2}-w_{1}}{w_{3}-w_{1}} & =\frac{S\left(z_{2}\right)-S\left(z_{1}\right)}{S\left(z_{3}\right)-S\left(z_{1}\right)}=\frac{\left(a z_{2}+b\right)-\left(a z_{1}+b\right)}{\left(a z_{3}+b\right)-\left(a z_{1}+b\right)} \\
& =\frac{a z_{2}-a z_{1}}{a z_{3}-a z_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}}
\end{aligned}
$$

as claimed.

Theorem 47.9 (continued 1)

Proof (continued). Second, suppose $\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}$. Then consider the similitude

$$
z^{\prime}=\frac{w_{3}=w_{1}}{z_{3}-z_{1}} z-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}
$$

(We consider "proper triangles" with distinct vertices.) Then

$$
\begin{aligned}
z_{1}^{\prime} & =\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}=w_{1} \\
z_{2}^{\prime} & =\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{2}-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}=\frac{w_{3}-w_{1}}{z_{3}-z_{1}}\left(z_{2}-z_{1}\right)+w_{1} \\
& =\left(w_{3}-w_{1}\right) \frac{w_{2}-w_{1}}{w_{3}-w_{1}}+w_{1} \text { by hypothesis } \\
& =w_{2}-w_{1}+w_{1}=w_{2},
\end{aligned}
$$

Theorem 47.9 (continued 1)

Proof (continued). Second, suppose $\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}$. Then consider the similitude

$$
z^{\prime}=\frac{w_{3}=w_{1}}{z_{3}-z_{1}} z-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}
$$

(We consider "proper triangles" with distinct vertices.) Then

$$
\begin{aligned}
z_{1}^{\prime} & =\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}=w_{1} \\
z_{2}^{\prime} & =\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{2}-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1}=\frac{w_{3}-w_{1}}{z_{3}-z_{1}}\left(z_{2}-z_{1}\right)+w_{1} \\
& =\left(w_{3}-w_{1}\right) \frac{w_{2}-w_{1}}{w_{3}-w_{1}}+w_{1} \text { by hypothesis } \\
& =w_{2}-w_{1}+w_{1}=w_{2}
\end{aligned}
$$

Theorem 47.9 (continued 2)

Theorem 47.9. Condition for Direct Similarity of Triangles.

The vertices $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_{1}, w_{2}, w_{3} \in \mathbb{C}$ of another triangle if and only if

$$
\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}
$$

Proof (continued).

$$
\begin{aligned}
z_{3}^{\prime} & =\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{3}-\frac{w_{3}-w_{1}}{z_{3}-z_{1}} z_{1}+w_{1} \\
& =\frac{w_{3}-w_{1}}{z_{3}-z_{1}}\left(z_{3}-z_{1}\right)+w_{1}=w_{3}-w_{1}+w_{1}=w_{3} .
\end{aligned}
$$

So the direct similitude maps z_{1}, z_{2}, z_{3} to w_{1}, w_{2}, w_{3}, respectively, as claimed.

Theorem 47.10

Theorem 47.10. Suppose the points z_{1}, z_{2}, z_{3} are related to the points w_{1}, w_{2}, w_{3} by a direct similitude, say $w_{i}=S_{1}\left(z_{i}\right)$ for $i=1,2,3$. If S is any direct or indirect similitude, then the triangles with vertices $S\left(z_{1}\right), S\left(z_{2}\right), S\left(z_{3}\right)$ and $S\left(w_{1}\right), S\left(w_{2}\right), S\left(w_{3}\right)$ are also related by a direct similitude.

Proof. Since $S_{1} \in \mathscr{S}_{+}$and \mathscr{S}_{+}is a normal subgroup of \mathscr{S} by Theorem 47.8, then by Theorem 45.2 $S \circ S_{1} \circ S^{-1} \in \mathscr{S}_{+}$(that is, $S \circ S_{1} \circ S^{-1}$ is a direct similitude) and

$$
S \circ S_{1} \circ S^{-1}\left(S\left(z_{i}\right)\right)=S \circ S_{1}\left(z_{i}\right)=S\left(w_{i}\right) \text { for } i=1,2,3 .
$$

So $S \circ S_{1} \circ S^{-1}$ is a direct similitude from the triangle with vertices $S\left(z_{1}\right), S\left(z_{2}\right), S\left(z_{3}\right)$ to $S\left(w_{1}\right), S\left(w_{2}\right), S\left(w_{3}\right)$, as claimed.

Theorem 47.10

Theorem 47.10. Suppose the points z_{1}, z_{2}, z_{3} are related to the points w_{1}, w_{2}, w_{3} by a direct similitude, say $w_{i}=S_{1}\left(z_{i}\right)$ for $i=1,2,3$. If S is any direct or indirect similitude, then the triangles with vertices $S\left(z_{1}\right), S\left(z_{2}\right), S\left(z_{3}\right)$ and $S\left(w_{1}\right), S\left(w_{2}\right), S\left(w_{3}\right)$ are also related by a direct similitude.

Proof. Since $S_{1} \in \mathscr{S}_{+}$and \mathscr{S}_{+}is a normal subgroup of \mathscr{S} by Theorem 47.8, then by Theorem $45.2 S \circ S_{1} \circ S^{-1} \in \mathscr{S}_{+}$(that is, $S \circ S_{1} \circ S^{-1}$ is a direct similitude) and

$$
S \circ S_{1} \circ S^{-1}\left(S\left(z_{i}\right)\right)=S \circ S_{1}\left(z_{i}\right)=S\left(w_{i}\right) \text { for } i=1,2,3
$$

So $S \circ S_{1} \circ S^{-1}$ is a direct similitude from the triangle with vertices $S\left(z_{1}\right), S\left(z_{2}\right), S\left(z_{3}\right)$ to $S\left(w_{1}\right), S\left(w_{2}\right), S\left(w_{3}\right)$, as claimed.

