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Theorem 47.3

Theorem 47.3

Theorem 47.3. An Auxiliary Theorem.
Given two pairs of points z0, z1 and w0,w1 where
|z0 − z1| = k|w0 − w1| 6= 0, there is just one mapping of type S+ and one
of type S− which maps z0 to w0 and maps z1 to w1.

Proof. Let az + b ∈ S+ with w0 = az0 + b and w1 = az1 + b. Then
w0 − w1 = (az0 + b)− (az1 + b) = a(z0 − z1) and

a = (w0 − w1)/(z0 − z1)

(this is where we use the facts that z0 − z1 6= 0), so that a is uniquely
determined in terms of the given w0,w1, z0, z1.

Then

b = w0 − az0 = w0 − z0
w0 − w1

z0 − z1

and b is uniquely determined (also, . . .
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Theorem 47.3

Theorem 47.3 (continued)

Proof (continued).

b = w1 − az1 = w1 − z1
w0 − w1

z0 − z1
=

w1(z0 − z1)− z1(w0 − w1)

z0 − z1

=
w1z0 − z1w0

z0 − z1
=

z0w0 − z0w0 + w1z0 − z1w0

z0 − z1

=
w0(z0 − z1)− z0(w0 − w1)

z0 − z1
= w0 − z0

w0 − w1

z0 − z1
,

as expected).

Similarly, for cz + d ∈ S− with w0 = cz0 + d and w1 = cz1 + d . Then
w0 − w1 = (cz0 + d)− (cz1 + d) = c(z0 − z1) and
c = (w0 − w1)/(z0 − z1) so that c is uniquely determined in terms of the
given w0,w1, z0, z1. Then d = w0 − cz0 = w0 − z0(w0 − w1)/(z0 − z1)
and d is uniquely determined.
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Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations.
Every similitude of the Gauss plane C is a collineation.

Proof. Let z 7→ z ′ be a similitude. Let ` be any line in the Gauss plane C.
Choose three points u, v ,w on ` with v between u and w on `. Then by
Lemma 43.A, |v − w |+ |w − u| = |w − u|. Since the mapping z 7→ z ′ is a
similitude the for some k > 0 we have |v ′ − w ′| = k|v − w |,
|v ′ − u′| = k|v − u|, |w ′ − u′| = k|w − u|, and so
k−1|v ′ − w ′|+ k−1|w ′ − u′| = k−1|w ′ − u′| or
|v ′ − w ′|+ |w ′ − u′| = |w ′ − u′|.

Also by Lemma 43.A, u′, v ′,w ′ are
collinear (say they lie on line `′) with v ′ between u′ and w ′ on the line.
That is, the collineation maps line ` to line `′. Since ` is an arbitrary line
in C, then the result follows.
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Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.
A similitude of the Gauss plane C is uniquely determined by the assignment
of a map of a triangle which is similar to the given triangle. That is, if
z0, z1, z2 are noncollinear points with respective images w0,w1,w2 then for
any z in the plane, the image of z is uniquely determined from w0,w1,w2.

Proof. Let z0, z1, z2 be noncollinear points in the Gauss plane C. By
Lemma 43.A we have: |z0 − z1|+ |z1 − z2| < |z0 − z2|,
|z0 − z1|+ |z0 − z2| < |z1 − z2|, and |z0 − z2|+ |z1 − z2| < |z0 − z1| since
the points are noncollinear and equality in any one of these three would
imply linearity of the three points. Now |z0 − z2| = k|w0 − w1|,
|z1 − z2| = k|w1 − w2|, and |z0 − z2| = k|w0 − w2| for some k > 0 since
we have a similitude.

So, substituting into the three inequalities and
dividing by k, we have |w0 − w1|+ |w1 − w2| < |w0 − w2|,
|w0 −w1|+ |w0 −w2| < |w1 −w2|, and |w0 −w2|+ |w1 −w2| < |w0 −w1|
and the points w0,w1,w2 are not collinear.
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Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude (continued)

Proof (continued). Let z be a point C other than z0, z1, z2. Consider the
circles Ci with (respective) centers zi and radii |z − zi | for i = 0, 1, 2.
Then the three circles intersect at point z . Since the centers are not
collinear, then by Lemma 43.B z is the only point on the three circles.
That is, point z is uniquely determined by the three distances |z − z0|,
|z − z1|, and |z − z2|. Now triangle w0w1w2 is similar to triangle z0z1z2

and similarly there is a unique point on the intersection of the three circles
C ′

i centered at wi with radii k|z − zi | for i = 0, 1, 2; denote the unique
point as w . Since the mapping is a similitude then the image of circle Ci is
circle C ′

i for i = 0, 1, 2 and we must have w as the image of z . Since z is
an arbitrary point in C (distinct from z0, z1, z2) then the similitude on C is
uniquely determined.
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Theorem 47.7

Theorem 47.7

Theorem 47.7. There are precisely two similitudes of the Gauss plane C
which map two given points z0 and z1 onto the given points w0 and w1

where |w0 − w1| = k|z0 − z1| 6= 0.

Proof. Theorem 47.3 gives two such similitudes, one in S+ and one in
S−. We now show that these are the only such similitudes. Let z be a
point in C that is not collinear with z0 and z1. Consider circle C0 centered
at z0 with radius |z − z0| and circle C1 centered at z1 with radius |z − z1|.
Since z lies on both C0 and C1 and z is not collinear with the centers of z0

and z1 then these circles intersect at two points.

Similarly, circle C ′
0

centered at w0 with radius k−1|z − z0| and circle C ′
1 centered at w1 with

radius k−1|z − z1| intersect in two points. Since the mapping is a
similitude, then z must be mapped to either one or the other of the two
points on circles C ′

0 and C ′
1. So there are at most two such similitudes,

and the result follows.
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Theorem 47.2. The Main Theorem on Similitudes of the Gauss
Plane

Theorem 47.2. The Main Theorem on Similitudes of the
Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss
Plane.
The set S of all similitudes of the Gauss plane C is composed of two
classes, S+ and S−. Th class S+ consists of all similitudes of the form
z ′ = az + b and the class S− of all similitudes of the form z ′ = cz + d .

Proof. Consider a given similitude of the Gauss plane C. Let z0 and z1 be
any distinct points in C with images w0 and w1, respectively, under the
similitude. By Theorem 47.3, there are two possibilities for the similitude,
one in S+ and one in S−.

By Theorem 47.7, there are only two
possibilities for the similitude. So the similitude must be in either S+ or
S− and hence every isometry of C is contained in either S+ or S−, as
claimed.
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Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes.
The similitudes form a group S , the direct similitudes forming a normal
subgroup S+. The opposite similitudes form a coset S− with respect to
S+. Neither S nor S+ is Abelian. The group of isometries I is a
normal subgroup of S , and I+ is a normal subgroup of S+.

Proof. Let S1 : z ′ = az + b, S2 : z ′ = cz + d , S3 : z ′ = a′z + b′, and
S4 : z ′ = c ′z + d ′ where a, c , a′, c ′ are nonzero. Then

S1 ◦ S2 : z ′ = a(cz + d) + b = (ac)z + (ad + b)

S1 ◦ S3 : z ′ = a(a′z + b′) + b = (aa′)z + (ab′ + b)

S3 ◦ S1 : z ′ = a′(az + b) + b′ = (a′a)z + (a′b + b′)

S3 ◦ S4 : z ′ = a′(c ′z + d ′) + b′ = (a′c ′)z + (a′d ′ + b′)

and we have each of these compositions in S (and these are all possible
types of compositions of elements of S ), and so composition really is a
binary operation on S .
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Theorem 47.8. Group Properties of Similitudes

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so
The Associative Law holds. The identity is z ′ = z and The Identity Law
holds. The inverse of S1 : z ′ = az + b is S−1

1 : z ′ = a−1z − a−1b and the

inverse of S3 : z ′ = a′z + b′ is S−1
3 : (a′)−1z − (a′)−1b′ and The Inverse

Law holds. So S is a group, as claimed.

Notice that S1 ◦ S2 ∈ S+ and S−1
1 ∈ S+ so for any S1,S2 ∈ S+ we must

have S1 ◦ S−1
2 ∈ S+ and so by Theorem 44.4, S+ is a subgroup of S and

so is a group, as claimed.

We now show S− is a left coset of S+. Let a′z + b′ ∈ S− where a 6= 0.
Then a′z + b′ ∈ S+, S∗ : z ′ = z ∈ S−, and left coset S∗S+ includes

S∗ ◦ (a′z + b′) = (a′z + b′) = a′z + b′. Since a′z + b′ is an arbitrary
element of S− then S− ⊂ S∗S+. Since the cosets of S+ partition S ,
then S− = S \S+ is a left coset of S+ and so S+ only has two cosets.
So by Theorem 45.3, “Subgroups of Index Two,”S+ is a normal subgroup
of S , as claimed.
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Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so
The Associative Law holds. The identity is z ′ = z and The Identity Law
holds. The inverse of S1 : z ′ = az + b is S−1

1 : z ′ = a−1z − a−1b and the

inverse of S3 : z ′ = a′z + b′ is S−1
3 : (a′)−1z − (a′)−1b′ and The Inverse

Law holds. So S is a group, as claimed.

Notice that S1 ◦ S2 ∈ S+ and S−1
1 ∈ S+ so for any S1,S2 ∈ S+ we must

have S1 ◦ S−1
2 ∈ S+ and so by Theorem 44.4, S+ is a subgroup of S and

so is a group, as claimed.
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Theorem 47.8. Group Properties of Similitudes

Theorem 47.8 (continued 2)

Proof (continued). To establish the non-Abelian claim, notice that
S5 : z ′ = iz and S6 : z ′ = z + 1 are in S+ ⊂ S but S5 ◦ S6 : z ′ = iz + i
and S6 ◦ S5 : z ′ = iz + 1, so S5 ◦ S6 6= S6 ◦ S5 and S+, and hence S , are
non Abelian, as claimed.

We now show that I+ is a normal subgroup of S+. Let
I : a′ = az + b ∈ I+ where |a| = 1 and let S : z ′ = cz + d ∈ S+ where
c 6= 0. Then S−1 : z ′ = c−1z − c−1d and

S−1 ◦ I ◦S = S−1 ◦ I (cz +d) = s−1(a(cz +d)+b) = S−1((ac)z +(ad +b))

= c−1((ac)z + (ad + b))− c−1d = az + c−1(ad + b)− c−1d ∈ I+

since |a| = 1. Since I is an arbitrary element of I+ and S is an arbitrary
element of S+, then by Theorem 45.2 I+ is a normal subgroup of S+, as
claimed.
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Theorem 47.8. Group Properties of Similitudes

Theorem 47.8 (continued 3)

Proof (continued). We now show that I is a normal subgroup of S .
With I1 : z ′ = az + b, I3 : z ′ = a′z + b′ ∈ I where |a| = |a′| = 1 and
S1 : z ′ = cz + d , S3 : z ′ = c ′z + d ∈ S where c 6= 0 6= c ′, we have
S−1

1 : z ′ = c−1z − c−1d and S−1
3 : z ′ = (c ′)−1z − (c ′)−1 d ′. We know

S−1
1 ◦ I1 ◦ S1 ∈ I+ ⊂ I from above. We also have

S−1
1 ◦ I3 ◦ S1 = S−1

1 ◦ I3(cz + d) = S−1
1 (a′(cz + d) + b′)

= S−1
1 ((a′c)z + c−1(a′d + b′)− c−1d ∈ I− ⊂ I

since |c−1a′c | = |c |−1|a′||c | = |a′| = 1,

S−1
3 ◦ I1 ◦ S3 = S−1

3 ◦ I1(c
′z + d ′) = S3(a(c

′z + d ′) + b′)

= S−1
3 ((ac ′)z + (ad ′ + b)) = (c ′)−1((ac ′)z + (ad ′ + b))− (c ′)−1 d ′

= (c ′)−1ac ′z + (c ′)−1(ad ′ + b)− (c ′)−1 d ′ ∈ I+ ⊂ I

since |(c ′)−1ac ′| = |c ′|−1|a||c ′| = |a| = 1,
() Real Analysis March 8, 2019 13 / 18



Theorem 47.8. Group Properties of Similitudes

Theorem 47.8 (continued 4)

Proof (continued).

S−1
3 ◦ I3 ◦ S3 = S−1

3 ◦ I3(c
′z + d ′) = S−1

3 (a′(c ′z + d ′) + b′)

= S−1
3 ((a′c ′z + (a′d ′ + b′))− (c ′)−1 b′

= ((c ′)−1 a′c ′)z + (c ′)−1(a′d ′ + b′)− (c ′)−1 b′ ∈ I− ⊂ I

since |(c ′)−1 a′c ′| = |c |−1|a′||c | = |a| = 1. Since this covers all possible
type of elements of S and I , we have S−1 ◦ I ◦ S ∈ I for all S ∈ S and
I ∈ I and so by Theorem 45.2, I is a normal subgroup of S , as
claimed.
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Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles.
The vertices z1, z2, z3 ∈ C of a triangle are mapped by a direct similitude
onto the corresponding vertices w1,w2,w3 ∈ C of another triangle if and
only if

z2 − z1

z3 − z1
=

w2 − w1

w3 − w1
.

Proof. First, suppose there is a direct similitude S : z ′ = az + b. Then

w2 − w1

w3 − w1
=

S(z2)− S(z1)

S(z3)− S(z1)
=

(az2 + b)− (az1 + b)

(az3 + b)− (az1 + b)

=
az2 − az1

az3 − az1
=

z2 − z1

z3 − z1
=

z2 − z1

z3 − z1
,

as claimed.
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Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9 (continued 1)

Proof (continued). Second, suppose
z2 − z1

z3 − z1
=

w2 − w1

w3 − w1
. Then consider

the similitude

z ′ =
w3 = w1

z3 − z1
z − w3 − w1

z3 − z1
z1 + w1.

(We consider “proper triangles” with distinct vertices.) Then

z ′1 =
w3 − w1

z3 − z1
z1 −

w3 − w1

z3 − z1
z1 + w1 = w1,

z ′2 =
w3 − w1

z3 − z1
z2 −

w3 − w1

z3 − z1
z1 + w1 =

w3 − w1

z3 − z1
(z2 − z1) + w1

= (w3 − w1)
w2 − w1

w3 − w1
+ w1 by hypothesis

= w2 − w1 + w1 = w2,
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Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9 (continued 2)

Theorem 47.9. Condition for Direct Similarity of Triangles.
The vertices z1, z2, z3 ∈ C of a triangle are mapped by a direct similitude
onto the corresponding vertices w1,w2,w3 ∈ C of another triangle if and
only if

z2 − z1

z3 − z1
=

w2 − w1

w3 − w1
.

Proof (continued).

z ′3 =
w3 − w1

z3 − z1
z3 −

w3 − w1

z3 − z1
z1 + w1

=
w3 − w1

z3 − z1
(z3 − z1) + w1 = w3 − w1 + w1 = w3.

So the direct similitude maps z1, z2, z3 to w1,w2,w3, respectively, as
claimed.
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Theorem 47.10

Theorem 47.10

Theorem 47.10. Suppose the points z1, z2, z3 are related to the points
w1,w2,w3 by a direct similitude, say wi = S1(zi ) for i = 1, 2, 3. If S is any
direct or indirect similitude, then the triangles with vertices
S(z1),S(z2),S(z3) and S(w1),S(w2),S(w3) are also related by a direct
similitude.

Proof. Since S1 ∈ S+ and S+ is a normal subgroup of S by Theorem
47.8, then by Theorem 45.2 S ◦ S1 ◦ S−1 ∈ S+ (that is, S ◦ S1 ◦ S−1 is a
direct similitude) and

S ◦ S1 ◦ S−1(S(zi )) = S ◦ S1(zi ) = S(wi ) for i = 1, 2, 3.

So S ◦ S1 ◦ S−1 is a direct similitude from the triangle with vertices
S(z1),S(z2),S(z3) to S(w1),S(w2),S(w3), as claimed.
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