Real Analysis

Chapter V. Mappings of the Euclidean Plane 47. Similarity Transformations and Results—Proofs of Theorems

Real Analysis

Table of contents

- Theorem 47.3
- 2 Theorem 47.4. Similitudes are Collineations
- 3 Theorem 47.6. Determination of a Similitude
 - 4 Theorem 47.7
- 5 Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane
- 6 Theorem 47.8. Group Properties of Similitudes
- 7 Theorem 47.9. Condition for Direct Similarity of Triangles
 - Theorem 47.10

Theorem 47.3. An Auxiliary Theorem.

Given two pairs of points z_0, z_1 and w_0, w_1 where $|z_0 - z_1| = k|w_0 - w_1| \neq 0$, there is just one mapping of type \mathscr{S}_+ and one of type \mathscr{S}_- which maps z_0 to w_0 and maps z_1 to w_1 .

Proof. Let $az + b \in S_+$ with $w_0 = az_0 + b$ and $w_1 = az_1 + b$. Then $w_0 - w_1 = (az_0 + b) - (az_1 + b) = a(z_0 - z_1)$ and

$$a = (w_0 - w_1)/(z_0 - z_1)$$

(this is where we use the facts that $z_0 - z_1 \neq 0$), so that *a* is uniquely determined in terms of the given w_0, w_1, z_0, z_1 .

Theorem 47.3

Theorem 47.3. An Auxiliary Theorem.

Given two pairs of points z_0, z_1 and w_0, w_1 where $|z_0 - z_1| = k|w_0 - w_1| \neq 0$, there is just one mapping of type \mathscr{S}_+ and one of type \mathscr{S}_- which maps z_0 to w_0 and maps z_1 to w_1 .

Proof. Let $az + b \in S_+$ with $w_0 = az_0 + b$ and $w_1 = az_1 + b$. Then $w_0 - w_1 = (az_0 + b) - (az_1 + b) = a(z_0 - z_1)$ and

$$a = (w_0 - w_1)/(z_0 - z_1)$$

(this is where we use the facts that $z_0 - z_1 \neq 0$), so that *a* is uniquely determined in terms of the given w_0, w_1, z_0, z_1 . Then

$$b = w_0 - az_0 = w_0 - z_0 \frac{w_0 - w_1}{z_0 - z_1}$$

and b is uniquely determined (also, ...

Theorem 47.3. An Auxiliary Theorem.

Given two pairs of points z_0, z_1 and w_0, w_1 where $|z_0 - z_1| = k|w_0 - w_1| \neq 0$, there is just one mapping of type \mathscr{S}_+ and one of type \mathscr{S}_- which maps z_0 to w_0 and maps z_1 to w_1 .

Proof. Let $az + b \in \mathscr{S}_+$ with $w_0 = az_0 + b$ and $w_1 = az_1 + b$. Then $w_0 - w_1 = (az_0 + b) - (az_1 + b) = a(z_0 - z_1)$ and

$$a = (w_0 - w_1)/(z_0 - z_1)$$

(this is where we use the facts that $z_0 - z_1 \neq 0$), so that *a* is uniquely determined in terms of the given w_0, w_1, z_0, z_1 . Then

$$b = w_0 - az_0 = w_0 - z_0 \frac{w_0 - w_1}{z_0 - z_1}$$

Real Analysis

and b is uniquely determined (also, ...

Theorem 47.3 (continued)

Proof (continued).

$$b = w_1 - az_1 = w_1 - z_1 \frac{w_0 - w_1}{z_0 - z_1} = \frac{w_1(z_0 - z_1) - z_1(w_0 - w_1)}{z_0 - z_1}$$
$$= \frac{w_1 z_0 - z_1 w_0}{z_0 - z_1} = \frac{z_0 w_0 - z_0 w_0 + w_1 z_0 - z_1 w_0}{z_0 - z_1}$$
$$= \frac{w_0(z_0 - z_1) - z_0(w_0 - w_1)}{z_0 - z_1} = w_0 - z_0 \frac{w_0 - w_1}{z_0 - z_1},$$

as expected).

Theorem 47.3 (continued)

Proof (continued).

$$b = w_1 - az_1 = w_1 - z_1 \frac{w_0 - w_1}{z_0 - z_1} = \frac{w_1(z_0 - z_1) - z_1(w_0 - w_1)}{z_0 - z_1}$$
$$= \frac{w_1 z_0 - z_1 w_0}{z_0 - z_1} = \frac{z_0 w_0 - z_0 w_0 + w_1 z_0 - z_1 w_0}{z_0 - z_1}$$
$$= \frac{w_0(z_0 - z_1) - z_0(w_0 - w_1)}{z_0 - z_1} = w_0 - z_0 \frac{w_0 - w_1}{z_0 - z_1},$$

as expected).

Similarly, for $c\overline{z} + d \in \mathscr{S}_-$ with $w_0 = c\overline{z}_0 + d$ and $w_1 = c\overline{z}_1 + d$. Then $w_0 - w_1 = (c\overline{z}_0 + d) - (c\overline{z}_1 + d) = c(\overline{z}_0 - \overline{z}_1)$ and $c = (w_0 - w_1)/(\overline{z}_0 - \overline{z}_1)$ so that c is uniquely determined in terms of the given w_0, w_1, z_0, z_1 . Then $d = w_0 - c\overline{z}_0 = w_0 - \overline{z}_0(w_0 - w_1)/(\overline{z}_0 - \overline{z}_1)$ and d is uniquely determined.

- ()

Theorem 47.3 (continued)

Proof (continued).

$$b = w_1 - az_1 = w_1 - z_1 \frac{w_0 - w_1}{z_0 - z_1} = \frac{w_1(z_0 - z_1) - z_1(w_0 - w_1)}{z_0 - z_1}$$
$$= \frac{w_1 z_0 - z_1 w_0}{z_0 - z_1} = \frac{z_0 w_0 - z_0 w_0 + w_1 z_0 - z_1 w_0}{z_0 - z_1}$$
$$= \frac{w_0(z_0 - z_1) - z_0(w_0 - w_1)}{z_0 - z_1} = w_0 - z_0 \frac{w_0 - w_1}{z_0 - z_1},$$

as expected).

Similarly, for $c\overline{z} + d \in \mathscr{S}_-$ with $w_0 = c\overline{z}_0 + d$ and $w_1 = c\overline{z}_1 + d$. Then $w_0 - w_1 = (c\overline{z}_0 + d) - (c\overline{z}_1 + d) = c(\overline{z}_0 - \overline{z}_1)$ and $c = (w_0 - w_1)/(\overline{z}_0 - \overline{z}_1)$ so that c is uniquely determined in terms of the given w_0, w_1, z_0, z_1 . Then $d = w_0 - c\overline{z}_0 = w_0 - \overline{z}_0(w_0 - w_1)/(\overline{z}_0 - \overline{z}_1)$ and d is uniquely determined.

()

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations. Every similitude of the Gauss plane \mathbb{C} is a collineation.

Proof. Let $z \mapsto z'$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C} . Choose three points u, v, w on ℓ with v between u and w on ℓ . Then by Lemma 43.A, |v - w| + |w - u| = |w - u|. Since the mapping $z \mapsto z'$ is a similitude the for some k > 0 we have |v' - w'| = k|v - w|, |v' - u'| = k|v - u|, |w' - u'| = k|w - u|, and so $k^{-1}|v' - w'| + k^{-1}|w' - u'| = k^{-1}|w' - u'|$ or |v' - w'| + |w' - u'| = |w' - u'|.

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations. Every similitude of the Gauss plane \mathbb{C} is a collineation.

Proof. Let $z \mapsto z'$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C} . Choose three points u, v, w on ℓ with v between u and w on ℓ . Then by Lemma 43.A, |v - w| + |w - u| = |w - u|. Since the mapping $z \mapsto z'$ is a similitude the for some k > 0 we have |v' - w'| = k|v - w|, |v' - u'| = k|v - u|, |w' - u'| = k|w - u|, and so $k^{-1}|v' - w'| + k^{-1}|w' - u'| = k^{-1}|w' - u'|$ or |v' - w'| + |w' - u'| = |w' - u'|. Also by Lemma 43.A, u', v', w' are collinear (say they lie on line ℓ') with v' between u' and w' on the line. That is, the collineation maps line ℓ to line ℓ' . Since ℓ is an arbitrary line in \mathbb{C} , then the result follows.

Theorem 47.4. Similitudes are Collineations

Theorem 47.4. Similitudes are Collineations. Every similitude of the Gauss plane \mathbb{C} is a collineation.

Proof. Let $z \mapsto z'$ be a similitude. Let ℓ be any line in the Gauss plane \mathbb{C} . Choose three points u, v, w on ℓ with v between u and w on ℓ . Then by Lemma 43.A, |v - w| + |w - u| = |w - u|. Since the mapping $z \mapsto z'$ is a similitude the for some k > 0 we have |v' - w'| = k|v - w|, |v' - u'| = k|v - u|, |w' - u'| = k|w - u|, and so $k^{-1}|v' - w'| + k^{-1}|w' - u'| = k^{-1}|w' - u'|$ or |v' - w'| + |w' - u'| = |w' - u'|. Also by Lemma 43.A, u', v', w' are collinear (say they lie on line ℓ') with v' between u' and w' on the line. That is, the collineation maps line ℓ to line ℓ' . Since ℓ is an arbitrary line in \mathbb{C} , then the result follows.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_0, z_1, z_2 are noncollinear points with respective images w_0, w_1, w_2 then for any z in the plane, the image of z is uniquely determined from w_0, w_1, w_2 .

Proof. Let z_0, z_1, z_2 be noncollinear points in the Gauss plane \mathbb{C} . By Lemma 43.A we have: $|z_0 - z_1| + |z_1 - z_2| < |z_0 - z_2|$, $|z_0 - z_1| + |z_0 - z_2| < |z_1 - z_2|$, and $|z_0 - z_2| + |z_1 - z_2| < |z_0 - z_1|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $|z_0 - z_2| = k|w_0 - w_1|$, $|z_1 - z_2| = k|w_1 - w_2|$, and $|z_0 - z_2| = k|w_0 - w_2|$ for some k > 0 since we have a similitude.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_0, z_1, z_2 are noncollinear points with respective images w_0, w_1, w_2 then for any z in the plane, the image of z is uniquely determined from w_0, w_1, w_2 .

Proof. Let z_0, z_1, z_2 be noncollinear points in the Gauss plane \mathbb{C} . By Lemma 43.A we have: $|z_0 - z_1| + |z_1 - z_2| < |z_0 - z_2|$, $|z_0 - z_1| + |z_0 - z_2| < |z_1 - z_2|$, and $|z_0 - z_2| + |z_1 - z_2| < |z_0 - z_1|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $|z_0 - z_2| = k|w_0 - w_1|$, $|z_1 - z_2| = k|w_1 - w_2|$, and $|z_0 - z_2| = k|w_0 - w_2|$ for some k > 0 since we have a similitude. So, substituting into the three inequalities and dividing by k, we have $|w_0 - w_1| + |w_1 - w_2| < |w_0 - w_2|$, $|w_0 - w_1| + |w_0 - w_2| < |w_1 - w_2|$, and $|w_0 - w_2| + |w_1 - w_2| < |w_0 - w_1|$ and the points w_0, w_1, w_2 are not collinear.

Theorem 47.6. Determination of a Similitude

Theorem 47.6. Determination of a Similitude.

A similitude of the Gauss plane \mathbb{C} is uniquely determined by the assignment of a map of a triangle which is similar to the given triangle. That is, if z_0, z_1, z_2 are noncollinear points with respective images w_0, w_1, w_2 then for any z in the plane, the image of z is uniquely determined from w_0, w_1, w_2 .

Proof. Let z_0, z_1, z_2 be noncollinear points in the Gauss plane \mathbb{C} . By Lemma 43.A we have: $|z_0 - z_1| + |z_1 - z_2| < |z_0 - z_2|$, $|z_0 - z_1| + |z_0 - z_2| < |z_1 - z_2|$, and $|z_0 - z_2| + |z_1 - z_2| < |z_0 - z_1|$ since the points are noncollinear and equality in any one of these three would imply linearity of the three points. Now $|z_0 - z_2| = k|w_0 - w_1|$, $|z_1 - z_2| = k|w_1 - w_2|$, and $|z_0 - z_2| = k|w_0 - w_2|$ for some k > 0 since we have a similitude. So, substituting into the three inequalities and dividing by k, we have $|w_0 - w_1| + |w_1 - w_2| < |w_0 - w_2|$, $|w_0 - w_1| + |w_0 - w_2| < |w_1 - w_2|$, and $|w_0 - w_2| + |w_1 - w_2| < |w_0 - w_1|$ and the points w_0, w_1, w_2 are not collinear.

Theorem 47.6. Determination of a Similitude (continued)

Proof (continued). Let z be a point \mathbb{C} other than z_0, z_1, z_2 . Consider the circles C_i with (respective) centers z_i and radii $|z - z_i|$ for i = 0, 1, 2. Then the three circles intersect at point z. Since the centers are not collinear, then by Lemma 43.B z is the only point on the three circles. That is, point z is uniquely determined by the three distances $|z - z_0|$, $|z - z_1|$, and $|z - z_2|$. Now triangle $w_0 w_1 w_2$ is similar to triangle $z_0 z_1 z_2$ and similarly there is a *unique* point on the intersection of the three circles C'_i centered at w_i with radii $k|z - z_i|$ for i = 0, 1, 2; denote the unique point as w. Since the mapping is a similitude then the image of circle C_i is circle C'_i for i = 0, 1, 2 and we must have w as the image of z. Since z is an arbitrary point in \mathbb{C} (distinct from z_0, z_1, z_2) then the similitude on \mathbb{C} is

Theorem 47.6. Determination of a Similitude (continued)

Proof (continued). Let z be a point \mathbb{C} other than z_0, z_1, z_2 . Consider the circles C_i with (respective) centers z_i and radii $|z - z_i|$ for i = 0, 1, 2. Then the three circles intersect at point z. Since the centers are not collinear, then by Lemma 43.B z is the only point on the three circles. That is, point z is uniquely determined by the three distances $|z - z_0|$, $|z-z_1|$, and $|z-z_2|$. Now triangle $w_0w_1w_2$ is similar to triangle $z_0z_1z_2$ and similarly there is a *unique* point on the intersection of the three circles C'_i centered at w_i with radii $k|z - z_i|$ for i = 0, 1, 2; denote the unique point as w. Since the mapping is a similitude then the image of circle C_i is circle C'_i for i = 0, 1, 2 and we must have w as the image of z. Since z is an arbitrary point in \mathbb{C} (distinct from z_0, z_1, z_2) then the similitude on \mathbb{C} is uniquely determined.

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_0 and z_1 onto the given points w_0 and w_1 where $|w_0 - w_1| = k|z_0 - z_1| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathscr{S}_+ and one in \mathscr{S}_- . We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_0 and z_1 . Consider circle C_0 centered at z_0 with radius $|z - z_0|$ and circle C_1 centered at z_1 with radius $|z - z_1|$. Since z lies on both C_0 and C_1 and z is not collinear with the centers of z_0 and z_1 then these circles intersect at two points.

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_0 and z_1 onto the given points w_0 and w_1 where $|w_0 - w_1| = k|z_0 - z_1| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathcal{S}_+ and one in \mathscr{S}_{-} . We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_0 and z_1 . Consider circle C_0 centered at z_0 with radius $|z - z_0|$ and circle C_1 centered at z_1 with radius $|z - z_1|$. Since z lies on both C_0 and C_1 and z is not collinear with the centers of z_0 and z_1 then these circles intersect at two points. Similarly, circle C'_0 centered at w_0 with radius $k^{-1}|z - z_0|$ and circle C'_1 centered at w_1 with radius $k^{-1}|z - z_1|$ intersect in two points. Since the mapping is a similitude, then z must be mapped to either one or the other of the two points on circles C'_0 and C'_1 . So there are at most two such similitudes, and the result follows.

Theorem 47.7. There are precisely two similitudes of the Gauss plane \mathbb{C} which map two given points z_0 and z_1 onto the given points w_0 and w_1 where $|w_0 - w_1| = k|z_0 - z_1| \neq 0$.

Proof. Theorem 47.3 gives two such similitudes, one in \mathcal{S}_+ and one in \mathscr{S}_{-} . We now show that these are the only such similitudes. Let z be a point in \mathbb{C} that is not collinear with z_0 and z_1 . Consider circle C_0 centered at z_0 with radius $|z - z_0|$ and circle C_1 centered at z_1 with radius $|z - z_1|$. Since z lies on both C_0 and C_1 and z is not collinear with the centers of z_0 and z_1 then these circles intersect at two points. Similarly, circle C'_0 centered at w_0 with radius $k^{-1}|z - z_0|$ and circle C'_1 centered at w_1 with radius $k^{-1}|z - z_1|$ intersect in two points. Since the mapping is a similitude, then z must be mapped to either one or the other of the two points on circles C'_0 and C'_1 . So there are at most two such similitudes, and the result follows.

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.

The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_+ and \mathscr{S}_- . Th class \mathscr{S}_+ consists of all similitudes of the form z' = az + b and the class \mathscr{S}_- of all similitudes of the form $z' = c\overline{z} + d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C} . Let z_0 and z_1 be any distinct points in \mathbb{C} with images w_0 and w_1 , respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_+ and one in \mathscr{S}_- .

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.

The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_+ and \mathscr{S}_- . Th class \mathscr{S}_+ consists of all similitudes of the form z' = az + b and the class \mathscr{S}_- of all similitudes of the form $z' = c\overline{z} + d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C} . Let z_0 and z_1 be any distinct points in \mathbb{C} with images w_0 and w_1 , respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_+ and one in \mathscr{S}_- . By Theorem 47.7, there are only two possibilities for the similitude. So the similitude must be in either \mathscr{S}_+ or \mathscr{S}_- and hence every isometry of \mathbb{C} is contained in either \mathscr{S}_+ or \mathscr{S}_- , as claimed.

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane

Theorem 47.2. The Main Theorem on Similitudes of the Gauss Plane.

The set \mathscr{S} of all similitudes of the Gauss plane \mathbb{C} is composed of two classes, \mathscr{S}_+ and \mathscr{S}_- . Th class \mathscr{S}_+ consists of all similitudes of the form z' = az + b and the class \mathscr{S}_- of all similitudes of the form $z' = c\overline{z} + d$.

Proof. Consider a given similitude of the Gauss plane \mathbb{C} . Let z_0 and z_1 be any distinct points in \mathbb{C} with images w_0 and w_1 , respectively, under the similitude. By Theorem 47.3, there are two possibilities for the similitude, one in \mathscr{S}_+ and one in \mathscr{S}_- . By Theorem 47.7, there are only two possibilities for the similitude. So the similitude must be in either \mathscr{S}_+ or \mathscr{S}_- and hence every isometry of \mathbb{C} is contained in either \mathscr{S}_+ or \mathscr{S}_- , as claimed.

Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes.

The similitudes form a group \mathscr{S} , the direct similitudes forming a normal subgroup \mathscr{S}_+ . The opposite similitudes form a coset \mathscr{S}_- with respect to \mathscr{S}_+ . Neither \mathscr{S} nor \mathscr{S}_+ is Abelian. The group of isometries \mathscr{I} is a normal subgroup of \mathscr{S}_+ , and \mathscr{I}_+ is a normal subgroup of \mathscr{S}_+ .

Proof. Let
$$S_1 : z' = az + b$$
, $S_2 : z' = cz + d$, $S_3 : z' = a'\overline{z} + b'$, and $S_4 : z' = c'\overline{z} + d'$ where a, c, a', c' are nonzero. Then

$$S_1 \circ S_2 : z' = a(cz + d) + b = (ac)z + (ad + b)$$

$$S_1 \circ S_3 : z' = a(a'\overline{z} + b') + b = (aa')\overline{z} + (ab' + b)$$

$$S_3 \circ S_1 : z' = a'\overline{(az + b)} + b' = (a'\overline{a})\overline{z} + (a'\overline{b} + b')$$

$$S_3 \circ S_4 : z' = a'\overline{(c'\overline{z} + d')} + b' = (a'\overline{c'})z + (a'\overline{d'} + b')$$

and we have each of these compositions in \mathscr{S} (and these are all possible types of compositions of elements of \mathscr{S}), and so composition really is a binary operation on \mathscr{S} .

- ()

Theorem 47.8. Group Properties of Similitudes

Theorem 47.8. Group Properties of Similitudes.

The similitudes form a group \mathscr{S} , the direct similitudes forming a normal subgroup \mathscr{S}_+ . The opposite similitudes form a coset \mathscr{S}_- with respect to \mathscr{S}_+ . Neither \mathscr{S} nor \mathscr{S}_+ is Abelian. The group of isometries \mathscr{I} is a normal subgroup of \mathscr{S}_+ , and \mathscr{I}_+ is a normal subgroup of \mathscr{S}_+ .

Proof. Let
$$S_1 : z' = az + b$$
, $S_2 : z' = cz + d$, $S_3 : z' = a'\overline{z} + b'$, and $S_4 : z' = c'\overline{z} + d'$ where a, c, a', c' are nonzero. Then

$$S_1 \circ S_2 : z' = a(cz + d) + b = (ac)z + (ad + b)$$

$$S_1 \circ S_3 : z' = a(a'\overline{z} + b') + b = (aa')\overline{z} + (ab' + b)$$

$$S_3 \circ S_1 : z' = a'\overline{(az + b)} + b' = (a'\overline{a})\overline{z} + (a'\overline{b} + b')$$

$$S_3 \circ S_4 : z' = a'\overline{(c'\overline{z} + d')} + b' = (a'\overline{c'})z + (a'\overline{d'} + b')$$

and we have each of these compositions in \mathscr{S} (and these are all possible types of compositions of elements of \mathscr{S}), and so composition really is a binary operation on \mathscr{S} .

()

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $S_1 : z' = az + b$ is $S_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $S_3 : z' = a'\overline{z} + b'$ is $S_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_1 \circ S_2 \in \mathscr{S}_+$ and $S_1^{-1} \in \mathscr{S}_+$ so for any $S_1, S_2 \in \mathscr{S}_+$ we must have $S_1 \circ S_2^{-1} \in \mathscr{S}_+$ and so by Theorem 44.4, \mathscr{S}_+ is a subgroup of \mathscr{S} and so is a group, as claimed.

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $S_1 : z' = az + b$ is $S_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $S_3 : z' = a'\overline{z} + b'$ is $S_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_1 \circ S_2 \in \mathscr{S}_+$ and $S_1^{-1} \in \mathscr{S}_+$ so for any $S_1, S_2 \in \mathscr{S}_+$ we must have $S_1 \circ S_2^{-1} \in \mathscr{S}_+$ and so by Theorem 44.4, \mathscr{S}_+ is a subgroup of \mathscr{S} and so is a group, as claimed.

We now show \mathscr{S}_{-} is a left coset of \mathscr{S}_{+} . Let $a'\overline{z} + b' \in \mathscr{S}_{-}$ where $a \neq 0$. Then $\overline{a'z} + \overline{b'} \in \mathscr{S}_{+}$, $S^* : z' = \overline{z} \in \mathscr{S}_{-}$, and left coset $S^*\mathscr{S}_{+}$ includes $S^* \circ (\overline{a'z} + \overline{b'}) = \overline{(\overline{a'z} + \overline{b'})} = a'\overline{z} + b'$. Since $a'\overline{z} + b'$ is an arbitrary element of \mathscr{S}_{-} then $\mathscr{S}_{-} \subset S^*\mathscr{S}_{+}$. Since the cosets of \mathscr{S}_{+} partition \mathscr{S} , then $\mathscr{S}_{-} = \mathscr{S} \setminus \mathscr{S}_{+}$ is a left coset of \mathscr{S}_{+} and so \mathscr{S}_{+} only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{S}_{+} is a normal subgroup of \mathscr{S} , as claimed.

()

Theorem 47.8 (continued 1)

Proof (cont.). As observed above, function composition is associative, so The Associative Law holds. The identity is z' = z and The Identity Law holds. The inverse of $S_1 : z' = az + b$ is $S_1^{-1} : z' = a^{-1}z - a^{-1}b$ and the inverse of $S_3 : z' = a'\overline{z} + b'$ is $S_3^{-1} : \overline{(a')^{-1}\overline{z}} - \overline{(a')^{-1}\overline{b'}}$ and The Inverse Law holds. So \mathscr{S} is a group, as claimed.

Notice that $S_1 \circ S_2 \in \mathscr{S}_+$ and $S_1^{-1} \in \mathscr{S}_+$ so for any $S_1, S_2 \in \mathscr{S}_+$ we must have $S_1 \circ S_2^{-1} \in \mathscr{S}_+$ and so by Theorem 44.4, \mathscr{S}_+ is a subgroup of \mathscr{S} and so is a group, as claimed.

We now show \mathscr{S}_{-} is a left coset of \mathscr{S}_{+} . Let $a'\overline{z} + b' \in \mathscr{S}_{-}$ where $a \neq 0$. Then $\overline{a'z} + \overline{b'} \in \mathscr{S}_{+}$, $S^* : z' = \overline{z} \in \mathscr{S}_{-}$, and left coset $S^*\mathscr{S}_{+}$ includes $S^* \circ (\overline{a'z} + \overline{b'}) = \overline{(\overline{a'z} + \overline{b'})} = a'\overline{z} + b'$. Since $a'\overline{z} + b'$ is an arbitrary element of \mathscr{S}_{-} then $\mathscr{S}_{-} \subset S^*\mathscr{S}_{+}$. Since the cosets of \mathscr{S}_{+} partition \mathscr{S} , then $\mathscr{S}_{-} = \mathscr{S} \setminus \mathscr{S}_{+}$ is a left coset of \mathscr{S}_{+} and so \mathscr{S}_{+} only has two cosets. So by Theorem 45.3, "Subgroups of Index Two," \mathscr{S}_{+} is a normal subgroup of \mathscr{S} , as claimed.

Theorem 47.8 (continued 2)

Proof (continued). To establish the non-Abelian claim, notice that $S_5: z' = iz$ and $S_6: z' = z + 1$ are in $\mathscr{S}_+ \subset \mathscr{S}$ but $S_5 \circ S_6: z' = iz + i$ and $S_6 \circ S_5: z' = iz + 1$, so $S_5 \circ S_6 \neq S_6 \circ S_5$ and \mathscr{S}_+ , and hence \mathscr{S} , are non Abelian, as claimed.

We now show that \mathscr{I}_+ is a normal subgroup of \mathscr{S}_+ . Let $I: a' = az + b \in \mathscr{I}_+$ where |a| = 1 and let $S: z' = cz + d \in \mathscr{S}_+$ where $c \neq 0$. Then $S^{-1}: z' = c^{-1}z - c^{-1}d$ and

$$S^{-1} \circ I \circ S = S^{-1} \circ I(cz+d) = s^{-1}(a(cz+d)+b) = S^{-1}((ac)z+(ad+b))$$

$$= c^{-1}((ac)z + (ad + b)) - c^{-1}d = az + c^{-1}(ad + b) - c^{-1}d \in \mathscr{I}_+$$

since |a| = 1. Since *I* is an arbitrary element of \mathscr{I}_+ and *S* is an arbitrary element of \mathscr{S}_+ , then by Theorem 45.2 \mathscr{I}_+ is a normal subgroup of \mathscr{S}_+ , as claimed.

Theorem 47.8 (continued 2)

Proof (continued). To establish the non-Abelian claim, notice that $S_5: z' = iz$ and $S_6: z' = z + 1$ are in $\mathscr{S}_+ \subset \mathscr{S}$ but $S_5 \circ S_6: z' = iz + i$ and $S_6 \circ S_5: z' = iz + 1$, so $S_5 \circ S_6 \neq S_6 \circ S_5$ and \mathscr{S}_+ , and hence \mathscr{S} , are non Abelian, as claimed.

We now show that \mathscr{I}_+ is a normal subgroup of \mathscr{I}_+ . Let $I: a' = az + b \in \mathscr{I}_+$ where |a| = 1 and let $S: z' = cz + d \in \mathscr{I}_+$ where $c \neq 0$. Then $S^{-1}: z' = c^{-1}z - c^{-1}d$ and

$$S^{-1} \circ I \circ S = S^{-1} \circ I(cz+d) = s^{-1}(a(cz+d)+b) = S^{-1}((ac)z+(ad+b))$$

$$= c^{-1}((\mathsf{a} c)z + (\mathsf{a} d + b)) - c^{-1}d = \mathsf{a} z + c^{-1}(\mathsf{a} d + b) - c^{-1}d \in \mathscr{I}_+$$

since |a| = 1. Since I is an arbitrary element of \mathscr{I}_+ and S is an arbitrary element of \mathscr{S}_+ , then by Theorem 45.2 \mathscr{I}_+ is a normal subgroup of \mathscr{S}_+ , as claimed.

Theorem 47.8 (continued 3)

Proof (continued). We now show that \mathscr{I} is a normal subgroup of \mathscr{S} . With $l_1: z' = az + b$, $l_3: z' = a'\overline{z} + b' \in \mathscr{I}$ where |a| = |a'| = 1 and $S_1: z' = cz + d$, $S_3: z' = c'\overline{z} + d \in \mathscr{S}$ where $c \neq 0 \neq c'$, we have $S_1^{-1}: z' = c^{-1}z - c^{-1}d$ and $S_3^{-1}: z' = \overline{(c')^{-1}\overline{z}} - \overline{(c')^{-1}}\overline{d'}$. We know $S_1^{-1} \circ l_1 \circ S_1 \in \mathscr{I}_+ \subset \mathscr{I}$ from above. We also have

$$S_{1}^{-1} \circ I_{3} \circ S_{1} = S_{1}^{-1} \circ I_{3}(cz+d) = S_{1}^{-1}(a'\overline{(cz+d)}+b')$$

$$= S_{1}^{-1}((a'\overline{c})\overline{z} + c^{-1}(a'\overline{d}+b') - c^{-1}d \in \mathscr{I}_{-} \subset \mathscr{I}$$
since $|c^{-1}a'\overline{c}| = |c|^{-1}|a'||\overline{c}| = |a'| = 1$,
$$S_{3}^{-1} \circ I_{1} \circ S_{3} = S_{3}^{-1} \circ I_{1}(c'\overline{z}+d') = S_{3}(a(c'\overline{z}+d')+b')$$

$$= S_{3}^{-1}((ac')\overline{z} + (ad'+b)) = \overline{(c')^{-1}((ac')\overline{z} + (ad'+b))} - \overline{(c')^{-1}}\overline{d'}$$

$$= \overline{(c')^{-1}ac'z} + \overline{(c')^{-1}(ad'+b)} - \overline{(c')^{-1}}\overline{d'} \in \mathscr{I}_{+} \subset \mathscr{I}$$

since $|(c')^{-1}ac'| = |c'|^{-1}|a||c'| = |a| = 1$, () Real Analysis

Theorem 47.8 (continued 4)

Proof (continued).

$$\begin{split} S_3^{-1} \circ I_3 \circ S_3 &= S_3^{-1} \circ I_3(c'\overline{z} + d') = S_3^{-1}(a'\overline{(c'\overline{z} + d')} + b') \\ &= S_3^{-1}((a'\overline{c'}z + (a'\overline{d'} + b')) - \overline{(c')^{-1}}\overline{b'} \\ &= (\overline{(c')^{-1}}\overline{a'}c')\overline{z} + \overline{(c')^{-1}}(\overline{a'}d' + \overline{b'}) - \overline{(c')^{-1}}\overline{b'} \in \mathscr{I}_- \subset \mathscr{I} \\ \text{since } |\overline{(c')^{-1}}\overline{a'}c'| &= |c|^{-1}|a'||c| = |a| = 1. \text{ Since this covers all possible} \\ \text{type of elements of } \mathscr{I} \text{ and } \mathscr{I}, \text{ we have } S^{-1} \circ I \circ S \in \mathscr{I} \text{ for all } S \in \mathscr{S} \text{ and} \\ I \in \mathscr{I} \text{ and so by Theorem 45.2, } \mathscr{I} \text{ is a normal subgroup of } \mathscr{S}, \text{ as claimed.} \end{split}$$

Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles.

The vertices $z_1, z_2, z_3 \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_1, w_2, w_3 \in \mathbb{C}$ of another triangle if and only if

$$\frac{z_2-z_1}{z_3-z_1}=\frac{w_2-w_1}{w_3-w_1}.$$

Proof. First, suppose there is a direct similitude S : z' = az + b. Then

$$\frac{w_2 - w_1}{w_3 - w_1} = \frac{S(z_2) - S(z_1)}{S(z_3) - S(z_1)} = \frac{(az_2 + b) - (az_1 + b)}{(az_3 + b) - (az_1 + b)}$$
$$= \frac{az_2 - az_1}{az_3 - az_1} = \frac{z_2 - z_1}{z_3 - z_1} = \frac{z_2 - z_1}{z_3 - z_1},$$

as claimed.

Theorem 47.9. Condition for Direct Similarity of Triangles

Theorem 47.9. Condition for Direct Similarity of Triangles.

The vertices $z_1, z_2, z_3 \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_1, w_2, w_3 \in \mathbb{C}$ of another triangle if and only if

$$\frac{z_2-z_1}{z_3-z_1}=\frac{w_2-w_1}{w_3-w_1}.$$

Proof. First, suppose there is a direct similitude S : z' = az + b. Then

$$\frac{w_2 - w_1}{w_3 - w_1} = \frac{S(z_2) - S(z_1)}{S(z_3) - S(z_1)} = \frac{(az_2 + b) - (az_1 + b)}{(az_3 + b) - (az_1 + b)}$$
$$= \frac{az_2 - az_1}{az_3 - az_1} = \frac{z_2 - z_1}{z_3 - z_1} = \frac{z_2 - z_1}{z_3 - z_1},$$

as claimed.

Theorem 47.9 (continued 1)

Proof (continued). Second, suppose $\frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$. Then consider the similitude $w_2 = w_1$ $w_2 - w_1$

$$z' = \frac{w_3 = w_1}{z_3 - z_1} z - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1.$$

(We consider "proper triangles" with distinct vertices.) Then

$$z_1' = \frac{w_3 - w_1}{z_3 - z_1} z_1 - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1 = w_1,$$

$$z_2' = \frac{w_3 - w_1}{z_3 - z_1} z_2 - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1 = \frac{w_3 - w_1}{z_3 - z_1} (z_2 - z_1) + w_1$$

$$= (w_3 - w_1) \frac{w_2 - w_1}{w_3 - w_1} + w_1 \text{ by hypothesis}$$

$$= w_2 - w_1 + w_1 = w_2,$$

Theorem 47.9 (continued 1)

Proof (continued). Second, suppose $\frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$. Then consider the similitude

$$z' = \frac{w_3 = w_1}{z_3 - z_1} z - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1.$$

(We consider "proper triangles" with distinct vertices.) Then

$$\begin{aligned} z_1' &= \frac{w_3 - w_1}{z_3 - z_1} z_1 - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1 &= w_1, \\ z_2' &= \frac{w_3 - w_1}{z_3 - z_1} z_2 - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1 &= \frac{w_3 - w_1}{z_3 - z_1} (z_2 - z_1) + w_1 \\ &= (w_3 - w_1) \frac{w_2 - w_1}{w_3 - w_1} + w_1 \text{ by hypothesis} \\ &= w_2 - w_1 + w_1 &= w_2, \end{aligned}$$

Theorem 47.9 (continued 2)

Theorem 47.9. Condition for Direct Similarity of Triangles.

The vertices $z_1, z_2, z_3 \in \mathbb{C}$ of a triangle are mapped by a direct similitude onto the corresponding vertices $w_1, w_2, w_3 \in \mathbb{C}$ of another triangle if and only if

$$\frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$$

Proof (continued).

$$\begin{aligned} z'_3 &= \frac{w_3 - w_1}{z_3 - z_1} z_3 - \frac{w_3 - w_1}{z_3 - z_1} z_1 + w_1 \\ &= \frac{w_3 - w_1}{z_3 - z_1} (z_3 - z_1) + w_1 = w_3 - w_1 + w_1 = w_3. \end{aligned}$$

So the direct similitude maps z_1, z_2, z_3 to w_1, w_2, w_3 , respectively, as claimed.

()

Theorem 47.10. Suppose the points z_1, z_2, z_3 are related to the points w_1, w_2, w_3 by a direct similitude, say $w_i = S_1(z_i)$ for i = 1, 2, 3. If S is any direct or indirect similitude, then the triangles with vertices $S(z_1), S(z_2), S(z_3)$ and $S(w_1), S(w_2), S(w_3)$ are also related by a direct similitude.

Proof. Since $S_1 \in \mathscr{S}_+$ and \mathscr{S}_+ is a normal subgroup of \mathscr{S} by Theorem 47.8, then by Theorem 45.2 $S \circ S_1 \circ S^{-1} \in \mathscr{S}_+$ (that is, $S \circ S_1 \circ S^{-1}$ is a direct similitude) and

 $S \circ S_1 \circ S^{-1}(S(z_i)) = S \circ S_1(z_i) = S(w_i)$ for i = 1, 2, 3.

So $S \circ S_1 \circ S^{-1}$ is a direct similitude from the triangle with vertices $S(z_1), S(z_2), S(z_3)$ to $S(w_1), S(w_2), S(w_3)$, as claimed.

Theorem 47.10. Suppose the points z_1, z_2, z_3 are related to the points w_1, w_2, w_3 by a direct similitude, say $w_i = S_1(z_i)$ for i = 1, 2, 3. If S is any direct or indirect similitude, then the triangles with vertices $S(z_1), S(z_2), S(z_3)$ and $S(w_1), S(w_2), S(w_3)$ are also related by a direct similitude.

Proof. Since $S_1 \in \mathscr{S}_+$ and \mathscr{S}_+ is a normal subgroup of \mathscr{S} by Theorem 47.8, then by Theorem 45.2 $S \circ S_1 \circ S^{-1} \in \mathscr{S}_+$ (that is, $S \circ S_1 \circ S^{-1}$ is a direct similitude) and

$$S \circ S_1 \circ S^{-1}(S(z_i)) = S \circ S_1(z_i) = S(w_i)$$
 for $i = 1, 2, 3$.

So $S \circ S_1 \circ S^{-1}$ is a direct similitude from the triangle with vertices $S(z_1), S(z_2), S(z_3)$ to $S(w_1), S(w_2), S(w_3)$, as claimed.