Real Analysis

Chapter V. Mappings of the Euclidean Plane

48. Groups of Translations and Rotations—Proofs of Theorems

Real Analys

January 11, 2022 1

Theorem 48.3. The Fixed Point of a Direct Isometry

Theorem 48.3. The Fixed Point of a Direct Isometry

Theorem 48.3. The Fixed Point of a Direct Isometry.

Let I_1 be the direct isometry z' = az + b where |a| = 1 and $a \ne 1$. Then I_1 has only one fixed point, given by $w = b(1 - a)^{-1}$, and I_1 can be written in the form z' = a(z - w) + w, which shows that I_1 is a rotation about w.

Proof. If w is a fixed point under I, then w = aw + b so that $w = b(a-1)^{-1}$, as claimed. Since z' = az + b then

$$z' = az + (1 - a)w = az + w - aw = a(z - w) + w$$

as claimed. So I_1 is composed of (1) a translation or w to 0, (2) a rotation about 0 through an angle arg(a), and (3) a translation of 0 back to w. This accomplishes a rotation about w through an angle arg(a).

Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations.

The group $\mathscr T$ of translations of the Gauss plane is transitive, and a normal subgroup of the group $\mathscr I_+$ of direct isometries.

Proof. First, for $T_1: z'=z+z_1$ and $T_2: z'=z-z_2$, we have $T_2^{-1}: z'=z-z_2$ and $T_1\circ T_2^{-1}: z'=z-z_2+z_1$ is a translation and so by Theorem 44.2, the set of translations is a subgroup of the direct isometries \mathscr{I}_+ .

For given $z_0 \in \mathbb{C}$, the translation $T: z' = z + z_0$ maps 0 to z_0 so that the group is transitive.

To establish the normal subgroup claim, let $I_1: z' = az + b \in \mathscr{I}_+$ where |a| = 1 and let $T_d: z' = z + d \in \mathscr{T}$. Then $I_1^{-1}: z' = a^{-1}z + a^{-1}b$ and

$$I_1^{-1} \circ T_d \circ I_1 = I_1^{-1} \circ T_d(az+b) = I_1^{-1}((az+b)+d)$$
$$= a^{-1}((az+b)+d) - a^{-1}b = z+a^{-1}d \in \mathscr{T}.$$

Since I_1 is an arbitrary element of \mathscr{I}_+ and T_d is an arbitrary element of \mathscr{T} then by Theorem 45.2, \mathscr{T} is a normal subgroup of \mathscr{I}_+ .

Charren 18 E. Potation Crou

Theorem 48.5. Rotation Groups

Theorem 48.5. Rotation Groups.

The set of rotations about the point w form a group \mathcal{R}_w , and the groups \mathcal{R}_w , for all values of w, are isomorphic.

Proof. Let $I_1, I_2 \in \mathcal{R}_w$. Say the canonical forms are $I_1 = T_w \circ R \circ T_w^{-1}$ and $I-2=T_w \circ R' \circ T_w^{-1}$ where R and R' are rotations about the origin 0. We have $I_1^{-1}=T_w \circ R^{-1} \circ T_w^{-1}$. Now the rotations about the origin form a group by Theorem 46.3, so $R' \circ R^{-1}$ is an element of this group and hence is a rotation about the origin. So

$$I_2 \circ I_1^{-1} = (T_w \circ R' \circ T_w^{-1}) \circ (T_w \circ R^{-1} \circ T_w^{-1}) = T_w \circ (R' \circ R^{-1}) \circ T_w^{-1}$$

is a rotation about w and hence $I_2 \circ I_1^{-1} \in \mathcal{R}_w$. Since I_1 and I_2 are arbitrary elements of \mathcal{R}_w then by Theorem 44.2, \mathcal{R}_w is a subgroup of, say, \mathscr{I}_+ . So \mathscr{R}_w is a group, as claimed.

 Real Analysis
 January 11, 2022
 4 / 8
 ()
 Real Analysis
 January 11, 2022
 5 / 8

Theorem 48.5 (continued)

Proof (continued). Now consider groups \mathscr{R}_w and \mathscr{R}_0 (rotation about the origin). Define $\beta:\mathscr{R}_0\to\mathscr{R}_w$ as $\beta(R)=T_w\circ R\circ T_w^{-1}$. Since $\beta:\mathscr{R}_0\to\mathscr{R}_w$ as $\beta(R)=T_w\circ R\circ T_w^{-1}$. Since R can range over all rotations about 0, the $\beta(R)$ ranges over all rotations about W. That is, R is onto. Clearly, R is one to one. Now for $R,R'\in\mathscr{R}_0$ we have

$$\beta(R \circ R') = T_w \circ (R \circ R') \circ T_w^{-1} = (T_w \circ R \circ T_w^{-1}) \circ (T_w \circ R' \circ T_w^{-1}) = \beta(R) \circ \beta(R')$$

and so β is a group isomorphism. So $\mathscr{R}_w \cong \mathscr{R}_0$. Since this holds for any point w, for $w_1, w_2 \in \mathbb{C}$ we have $\mathscr{R}_{w_1} \cong \mathscr{R}_0$ and $\mathscr{R}_{w_2} \cong \mathscr{R}_0$ and so $\mathscr{R}_{w_1} \cong \mathscr{R}_{w_2}$ (group isomorphisms is an equivalence relation by Exercise 45.1).

() Real Analysis January 11, 2022

Corollary 48.

Corollary 48.5 (continued)

Proof. ... whereas

$$T_b \circ R \circ T_b^{-1}(z) = T_b \circ R(z-b) = T_b(k(z-b)) = k(z-b) + b = kz - kb + b$$

and so $I_1 \circ R \circ I_1^{-1} = T_b \circ R \circ T_b^{-1} \in \mathscr{R}_b$. So $I_1 \mathscr{R}_0 I_1^{-1} = \mathscr{R}_b$.

Let $I_2: z' = c\overline{z} + d$ where |c| = 1 be an indirect isometry and let R: z' = kz, where |k| = 1, be a rotation about the origin. We have

$$I_2 \circ R \circ I_2^{-1}(z) = I_2 \circ R(\overline{c^{-1}}\,\overline{z} - \overline{c^{-1}}\,\overline{d}) = I_2(k(\overline{c^{-1}}\,\overline{z} - \overline{c^{-1}}\,\overline{d}))$$

$$= c\overline{(k(\overline{c^{-1}}\,\overline{z}-\overline{c^{-1}}\,\overline{d})} + d = c(\overline{k}(c^{-1}zc^{-1}d)) + d = \overline{k}z - \overline{k}d + d$$

whereas, with $R': z' = \overline{k}z$ as a rotation about the origin,

$$T_d \circ R' \circ T_d^{-1}(z) = T_d \circ R'(z-d) = T_d(\overline{k}(z-d)) = \overline{k}(z-d) + d = \overline{k}z - \overline{k}d + d,$$
 and so $I_2 \circ R \circ I_2^{-1} - T_d \circ R' \circ T_d^{-1} \in \mathcal{R}_d$. So $I_2 \mathcal{R}_0 I_2^{-1} = \mathcal{R}_d$. That is, $I_1 \mathcal{R}_0 I_1^{-1}$ and $I_2 \mathcal{R}_0 I_2^{-1}$ are also rotation groups for $I_1 \in \mathcal{I}_+$ and $I_2 \in \mathcal{I}_-$. So the set of all conjugate subgroups \mathcal{R}_0 in group \mathcal{I} is equal to the set of all rotation groups $\{\mathcal{R}_w \mid w \in \mathbb{C}\}$, as claimed.

Corollary 48.5

Corollary 48.5

Corollary 48.5. The rotation groups \mathcal{R}_w form a complete set of conjugate subgroups of \mathcal{R}_0 within the group of all isometries \mathscr{I} of the Gauss plane \mathbb{C} . That is,

$$\{\mathscr{R}_w \mid w \in \mathbb{C}\} = \{I \circ \mathscr{R}_0 \circ I^{-1} \mid I \in \mathscr{I}\}.$$

Proof. Every element of \mathscr{R}_w has a canonical form $T_w \circ R \circ T_w^{-1}$ for some $R \in \mathscr{R}_0$ (and conversely $T_w \circ R \circ T_w^{-1}$ is a rotation about w for any $R \in \mathscr{R}_0$) so $\mathscr{R}_w = T_w \mathscr{R}_0 T_w^{-1}$ and all \mathscr{R}_w are conjugates of \mathscr{R}_0 .

We now need to show that $I_1\mathscr{R}_0I_1^{-1}$ and $I_2\mathscr{R}_0I_2^{-1}$ are rotation groups \mathscr{R}_w for some w, where $I_1\in\mathscr{I}_+$ and $I_2\in\mathscr{I}_2$. Let $I_1:z'=az+b$ where |a|=1 be a direct isometry and let R:z'kz where |k|=1 be a rotation about the origin. We have

$$I_1 \circ R \circ I_1^{-1}(z) = I_1 \circ R(a^{-1}z - a^{-1}b)$$

= $I_1(k(a^{-1}z - a^{-1}b)) = a(k(a^{-1}z - a^{-1}b)) + b = kz - kb + b \dots$

() Real Analysis January 11, 2022 7 / 8