## Real Analysis

## Chapter V. Mappings of the Euclidean Plane

48. Groups of Translations and Rotations-Proofs of Theorems


## Table of contents

(1) Theorem 48.1. The Group of Translations
(2) Theorem 48.3. The Fixed Point of a Direct Isometry
(3) Theorem 48.5. Rotation Groups
(4) Corollary 48.5

## Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations.
The group $\mathscr{T}$ of translations of the Gauss plane is transitive, and a normal subgroup of the group $\mathscr{I}_{+}$of direct isometries.

Proof. First, for $T_{1}: z^{\prime}=z+z_{1}$ and $T_{2}: z^{\prime}=z-z_{2}$, we have
$T_{2}^{-1}: z^{\prime}=z-z_{2}$ and $T_{1} \circ T_{2}^{-1}: z^{\prime}=z-z_{2}+z_{1}$ is a translation and so by Theorem 44.2, the set of translations is a subgroup of the direct isometries

## Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations.
The group $\mathscr{T}$ of translations of the Gauss plane is transitive, and a normal subgroup of the group $\mathscr{I}_{+}$of direct isometries.
Proof. First, for $T_{1}: z^{\prime}=z+z_{1}$ and $T_{2}: z^{\prime}=z-z_{2}$, we have $T_{2}^{-1}: z^{\prime}=z-z_{2}$ and $T_{1} \circ T_{2}^{-1}: z^{\prime}=z-z_{2}+z_{1}$ is a translation and so by Theorem 44.2, the set of translations is a subgroup of the direct isometries $\mathscr{I}_{+}$.
For given $z_{0} \in \mathbb{C}$, the translation $T: z^{\prime}=z+z_{0}$ maps 0 to $z_{0}$ so that the group is transitive.

## Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations.
The group $\mathscr{T}$ of translations of the Gauss plane is transitive, and a normal subgroup of the group $\mathscr{I}_{+}$of direct isometries.
Proof. First, for $T_{1}: z^{\prime}=z+z_{1}$ and $T_{2}: z^{\prime}=z-z_{2}$, we have $T_{2}^{-1}: z^{\prime}=z-z_{2}$ and $T_{1} \circ T_{2}^{-1}: z^{\prime}=z-z_{2}+z_{1}$ is a translation and so by Theorem 44.2, the set of translations is a subgroup of the direct isometries $\mathscr{I}_{+}$.
For given $z_{0} \in \mathbb{C}$, the translation $T: z^{\prime}=z+z_{0}$ maps 0 to $z_{0}$ so that the group is transitive.
To establish the normal subgroup claim, let $I_{1}: z^{\prime}=a z+b \in \mathscr{I}+$ where $|a|=1$ and let $T_{d}: z^{\prime}=z+d \in \mathscr{T}$. Then $I_{1}^{-1}: z^{\prime}=a^{-1} z+a^{-1} b$ and

$$
\begin{gathered}
I_{1}^{-1} \circ T_{d} \circ I_{1}=I_{1}^{-1} \circ T_{d}(a z+b)=I_{1}^{-1}((a z+b)+d) \\
=a^{-1}((a z+b)+d)-a^{-1} b=z+a^{-1} d \in \mathscr{T} .
\end{gathered}
$$

Since $I_{1}$ is an arbitrary element of $\mathscr{I}_{+}$and $T_{d}$ is an arbitrary element of $\mathscr{T}$ then by Theorem 45.2, $\mathscr{T}$ is a normal subgroup of $\mathscr{I}_{+}$.

## Theorem 48.1. The Group of Translations

## Theorem 48.1. The Group of Translations.

The group $\mathscr{T}$ of translations of the Gauss plane is transitive, and a normal subgroup of the group $\mathscr{I}_{+}$of direct isometries.
Proof. First, for $T_{1}: z^{\prime}=z+z_{1}$ and $T_{2}: z^{\prime}=z-z_{2}$, we have $T_{2}^{-1}: z^{\prime}=z-z_{2}$ and $T_{1} \circ T_{2}^{-1}: z^{\prime}=z-z_{2}+z_{1}$ is a translation and so by Theorem 44.2, the set of translations is a subgroup of the direct isometries $\mathscr{I}_{+}$.
For given $z_{0} \in \mathbb{C}$, the translation $T: z^{\prime}=z+z_{0}$ maps 0 to $z_{0}$ so that the group is transitive.
To establish the normal subgroup claim, let $I_{1}: z^{\prime}=a z+b \in \mathscr{I}_{+}$where $|a|=1$ and let $T_{d}: z^{\prime}=z+d \in \mathscr{T}$. Then $I_{1}^{-1}: z^{\prime}=a^{-1} z+a^{-1} b$ and

$$
\begin{gathered}
I_{1}^{-1} \circ T_{d} \circ I_{1}=I_{1}^{-1} \circ T_{d}(a z+b)=I_{1}^{-1}((a z+b)+d) \\
\quad=a^{-1}((a z+b)+d)-a^{-1} b=z+a^{-1} d \in \mathscr{T} .
\end{gathered}
$$

Since $I_{1}$ is an arbitrary element of $\mathscr{I}+$ and $T_{d}$ is an arbitrary element of $\mathscr{T}$ then by Theorem 45.2, $\mathscr{T}$ is a normal subgroup of $\mathscr{I}_{+}$.

## Theorem 48.3. The Fixed Point of a Direct Isometry

## Theorem 48.3. The Fixed Point of a Direct Isometry.

Let $I_{1}$ be the direct isometry $z^{\prime}=a z+b$ where $|a|=1$ and $a \neq 1$. Then $I_{1}$ has only one fixed point, given by $w=b(1-a)^{-1}$, and $I_{1}$ can be written in the form $z^{\prime}=a(z-w)+w$, which shows that $l_{1}$ is a rotation about $w$.

Proof. If $w$ is a fixed point under $I$, then $w=a w+b$ so that $w=b(a-1)^{-1}$, as claimed. Since $z^{\prime}=a z+b$ then

$$
z^{\prime}=a z+(1-a) w=a z+w-a w=a(z-w)+w,
$$

as claimed. So $I_{1}$ is composed of (1) a translation or $w$ to $0,(2)$ a rotation about 0 through an angle $\arg (a)$, and (3) a translation of 0 back to $w$. This accomplishes a rotation about $w$ through an angle $\arg (a)$.

## Theorem 48.3. The Fixed Point of a Direct Isometry

## Theorem 48.3. The Fixed Point of a Direct Isometry.

Let $I_{1}$ be the direct isometry $z^{\prime}=a z+b$ where $|a|=1$ and $a \neq 1$. Then $I_{1}$ has only one fixed point, given by $w=b(1-a)^{-1}$, and $I_{1}$ can be written in the form $z^{\prime}=a(z-w)+w$, which shows that $l_{1}$ is a rotation about $w$.

Proof. If $w$ is a fixed point under $I$, then $w=a w+b$ so that $w=b(a-1)^{-1}$, as claimed. Since $z^{\prime}=a z+b$ then

$$
z^{\prime}=a z+(1-a) w=a z+w-a w=a(z-w)+w,
$$

as claimed. So $I_{1}$ is composed of (1) a translation or $w$ to 0 , (2) a rotation about 0 through an angle $\arg (a)$, and (3) a translation of 0 back to $w$. This accomplishes a rotation about $w$ through an angle $\arg (a)$.

## Theorem 48.5. Rotation Groups

Theorem 48.5. Rotation Groups.
The set of rotations about the point $w$ form a group $\mathscr{R}_{w}$, and the groups $\mathscr{R}_{w}$, for all values of $w$, are isomorphic.

Proof. Let $I_{1}, I_{2} \in \mathscr{R}_{w}$. Say the canonical forms are $I_{1}=T_{w} \circ R \circ T_{w}^{-1}$ and $I-2=T_{w} \circ R^{\prime} \circ T_{w}^{-1}$ where $R$ and $R^{\prime}$ are rotations about the origin 0 . We have $I_{1}^{-1}=T_{w} \circ R^{-1} \circ T_{w}^{-1}$. Now the rotations about the origin form a group by Theorem 46.3, so $R^{\prime} \circ R^{-1}$ is an element of this group and hence is a rotation about the origin.

## Theorem 48.5. Rotation Groups

## Theorem 48.5. Rotation Groups.

The set of rotations about the point $w$ form a group $\mathscr{R}_{w}$, and the groups $\mathscr{R}_{w}$, for all values of $w$, are isomorphic.

Proof. Let $I_{1}, I_{2} \in \mathscr{R}_{w}$. Say the canonical forms are $I_{1}=T_{w} \circ R \circ T_{w}^{-1}$ and $I-2=T_{w} \circ R^{\prime} \circ T_{w}^{-1}$ where $R$ and $R^{\prime}$ are rotations about the origin 0 . We have $I_{1}^{-1}=T_{w} \circ R^{-1} \circ T_{w}^{-1}$. Now the rotations about the origin form a group by Theorem 46.3, so $R^{\prime} \circ R^{-1}$ is an element of this group and hence is a rotation about the origin. So

is a rotation about $w$ and hence $I_{2} \circ I_{1}^{-1} \in \mathscr{R}_{w}$. Since $I_{1}$ and $I_{2}$ are arbitrary elements of $\mathscr{R}_{w}$ then by Theorem $44.2, \mathscr{R}_{w}$ is a subgroup of, say, $\mathscr{I}_{+}$. So $\mathscr{R}_{w}$ is a group, as claimed.

## Theorem 48.5. Rotation Groups

## Theorem 48.5. Rotation Groups.

The set of rotations about the point $w$ form a group $\mathscr{R}_{w}$, and the groups $\mathscr{R}_{w}$, for all values of $w$, are isomorphic.

Proof. Let $I_{1}, I_{2} \in \mathscr{R}_{w}$. Say the canonical forms are $I_{1}=T_{w} \circ R \circ T_{w}^{-1}$ and $I-2=T_{w} \circ R^{\prime} \circ T_{w}^{-1}$ where $R$ and $R^{\prime}$ are rotations about the origin 0 . We have $I_{1}^{-1}=T_{w} \circ R^{-1} \circ T_{w}^{-1}$. Now the rotations about the origin form a group by Theorem 46.3, so $R^{\prime} \circ R^{-1}$ is an element of this group and hence is a rotation about the origin. So

$$
I_{2} \circ I_{1}^{-1}=\left(T_{w} \circ R^{\prime} \circ T_{w}^{-1}\right) \circ\left(T_{w} \circ R^{-1} \circ T_{w}^{-1}\right)=T_{w} \circ\left(R^{\prime} \circ R^{-1}\right) \circ T_{w}^{-1}
$$

is a rotation about $w$ and hence $I_{2} \circ I_{1}^{-1} \in \mathscr{R}_{w}$. Since $I_{1}$ and $I_{2}$ are arbitrary elements of $\mathscr{R}_{w}$ then by Theorem $44.2, \mathscr{R}_{w}$ is a subgroup of, say, $\mathscr{I}_{+}$. So $\mathscr{R}_{w}$ is a group, as claimed.

## Theorem 48.5 (continued)

Proof (continued). Now consider groups $\mathscr{R}_{w}$ and $\mathscr{R}_{0}$ (rotation about the origin). Define $\beta: \mathscr{R}_{0} \rightarrow \mathscr{R}_{w}$ as $\beta(R)=T_{w} \circ R \circ T_{w}^{-1}$. Since $\beta: \mathscr{R}_{0} \rightarrow \mathscr{R}_{w}$ as $\beta(R)=T_{w} \circ R \circ T_{w}^{-1}$. Since $R$ can range over all rotations about 0 , the $\beta(R)$ ranges over all rotations about $w$. That is, $\beta$ is onto. Clearly, $\beta$ is one to one. Now for $R, R^{\prime} \in \mathscr{R}_{0}$ we have
$\beta\left(R \circ R^{\prime}\right)=T_{w} \circ\left(R \circ R^{\prime}\right) \circ T_{w}^{-1}=\left(T_{w} \circ R \circ T_{w}^{-1}\right) \circ\left(T_{w} \circ R^{\prime} \circ T_{w}^{-1}\right)=\beta(R) \circ \beta\left(R^{\prime}\right)$
and so $\beta$ is a group isomorphism. So $\mathscr{R}_{w} \cong \mathscr{R}_{0}$. Since this holds for any point $w$, for $w_{1}, w_{2} \in \mathbb{C}$ we have $\mathscr{R}_{w_{1}} \cong \mathscr{R}_{0}$ and $\mathscr{R}_{w_{2}} \cong \mathscr{R}_{0}$ and so $\mathscr{R}_{w_{1}} \cong \mathscr{R}_{w_{2}}$ (group isomorphisms is an equivalence relation by Exercise 45.1).

## Theorem 48.5 (continued)

Proof (continued). Now consider groups $\mathscr{R}_{w}$ and $\mathscr{R}_{0}$ (rotation about the origin). Define $\beta: \mathscr{R}_{0} \rightarrow \mathscr{R}_{w}$ as $\beta(R)=T_{w} \circ R \circ T_{w}^{-1}$. Since $\beta: \mathscr{R}_{0} \rightarrow \mathscr{R}_{w}$ as $\beta(R)=T_{w} \circ R \circ T_{w}^{-1}$. Since $R$ can range over all rotations about 0 , the $\beta(R)$ ranges over all rotations about $w$. That is, $\beta$ is onto. Clearly, $\beta$ is one to one. Now for $R, R^{\prime} \in \mathscr{R}_{0}$ we have
$\beta\left(R \circ R^{\prime}\right)=T_{w} \circ\left(R \circ R^{\prime}\right) \circ T_{w}^{-1}=\left(T_{w} \circ R \circ T_{w}^{-1}\right) \circ\left(T_{w} \circ R^{\prime} \circ T_{w}^{-1}\right)=\beta(R) \circ \beta\left(R^{\prime}\right)$ and so $\beta$ is a group isomorphism. So $\mathscr{R}_{w} \cong \mathscr{R}_{0}$. Since this holds for any point $w$, for $w_{1}, w_{2} \in \mathbb{C}$ we have $\mathscr{R}_{w_{1}} \cong \mathscr{R}_{0}$ and $\mathscr{R}_{w_{2}} \cong \mathscr{R}_{0}$ and so $\mathscr{R}_{w_{1}} \cong \mathscr{R}_{w_{2}}$ (group isomorphisms is an equivalence relation by Exercise 45.1).

## Corollary 48.5

Corollary 48.5. The rotation groups $\mathscr{R}_{w}$ form a complete set of conjugate subgroups of $\mathscr{R}_{0}$ within the group of all isometries $\mathscr{I}$ of the Gauss plane $\mathbb{C}$. That is,

$$
\left\{\mathscr{R}_{w} \mid w \in \mathbb{C}\right\}=\left\{I \circ \mathscr{R}_{0} \circ I^{-1} \mid I \in \mathscr{I}\right\} .
$$

Proof. Every element of $\mathscr{R}_{w}$ has a canonical form $T_{w} \circ R \circ T_{w}^{-1}$ for some
$R \in \mathscr{R}_{0}$ (and conversely $T_{w} \circ R \circ T_{w}^{-1}$ is a rotation about $w$ for any
$\left.R \in \mathscr{R}_{0}\right)$ so $\mathscr{R}_{w}=T_{w} \mathscr{R}_{0} T_{w}^{-1}$ and all $\mathscr{R}_{w}$ are conjugates of $\mathscr{R}_{0}$.

## Corollary 48.5

Corollary 48.5. The rotation groups $\mathscr{R}_{w}$ form a complete set of conjugate subgroups of $\mathscr{R}_{0}$ within the group of all isometries $\mathscr{I}$ of the Gauss plane $\mathbb{C}$. That is,

$$
\left\{\mathscr{R}_{w} \mid w \in \mathbb{C}\right\}=\left\{I \circ \mathscr{R}_{0} \circ I^{-1} \mid I \in \mathscr{I}\right\} .
$$

Proof. Every element of $\mathscr{R}_{w}$ has a canonical form $T_{w} \circ R \circ T_{w}^{-1}$ for some $R \in \mathscr{R}_{0}$ (and conversely $T_{w} \circ R \circ T_{w}^{-1}$ is a rotation about $w$ for any $\left.R \in \mathscr{R}_{0}\right)$ so $\mathscr{R}_{w}=T_{w} \mathscr{R}_{0} T_{w}^{-1}$ and all $\mathscr{R}_{w}$ are conjugates of $\mathscr{R}_{0}$.

We now need to show that $I_{1} \mathscr{R}_{0} I_{1}^{-1}$ and $I_{2} \mathscr{R}_{0} I_{2}^{-1}$ are rotation groups $\mathscr{R}_{w}$ for some $w$, where $I_{1} \in \mathscr{I}_{+}$and $I_{2} \in \mathscr{I}_{2}$. Let $I_{1}: z^{\prime}=a z+b$ where $|a|=1$ be a direct isometry and let $R: z^{\prime} k z$ where $|k|=1$ be a rotation about the origin. We have

$$
\begin{gathered}
I_{1} \circ R \circ I_{1}^{-1}(z)=I_{1} \circ R\left(a^{-1} z-a^{-1} b\right) \\
=I_{1}\left(k\left(a^{-1} z-a^{-1} b\right)\right)=a\left(k\left(a^{-1} z-a^{-1} b\right)\right)+b=k z-k b+b \ldots
\end{gathered}
$$

## Corollary 48.5

Corollary 48.5. The rotation groups $\mathscr{R}_{w}$ form a complete set of conjugate subgroups of $\mathscr{R}_{0}$ within the group of all isometries $\mathscr{I}$ of the Gauss plane $\mathbb{C}$. That is,

$$
\left\{\mathscr{R}_{w} \mid w \in \mathbb{C}\right\}=\left\{\left|\circ \mathscr{R}_{0} \circ I^{-1}\right| I \in \mathscr{I}\right\} .
$$

Proof. Every element of $\mathscr{R}_{w}$ has a canonical form $T_{w} \circ R \circ T_{w}^{-1}$ for some $R \in \mathscr{R}_{0}$ (and conversely $T_{w} \circ R \circ T_{w}^{-1}$ is a rotation about $w$ for any $\left.R \in \mathscr{R}_{0}\right)$ so $\mathscr{R}_{w}=T_{w} \mathscr{R}_{0} T_{w}^{-1}$ and all $\mathscr{R}_{w}$ are conjugates of $\mathscr{R}_{0}$.

We now need to show that $I_{1} \mathscr{R}_{0} I_{1}^{-1}$ and $I_{2} \mathscr{R}_{0} I_{2}^{-1}$ are rotation groups $\mathscr{R}_{w}$ for some $w$, where $I_{1} \in \mathscr{I}_{+}$and $I_{2} \in \mathscr{I}_{2}$. Let $I_{1}: z^{\prime}=a z+b$ where $|a|=1$ be a direct isometry and let $R: z^{\prime} k z$ where $|k|=1$ be a rotation about the origin. We have

$$
\begin{gathered}
I_{1} \circ R \circ I_{1}^{-1}(z)=I_{1} \circ R\left(a^{-1} z-a^{-1} b\right) \\
=I_{1}\left(k\left(a^{-1} z-a^{-1} b\right)\right)=a\left(k\left(a^{-1} z-a^{-1} b\right)\right)+b=k z-k b+b \ldots
\end{gathered}
$$

## Corollary 48.5 (continued)

Proof. . . . whereas
$T_{b} \circ R \circ T_{b}^{-1}(z)=T_{b} \circ R(z-b)=T_{b}(k(z-b))=k(z-b)+b=k z-k b+b$ and so $I_{1} \circ R \circ I_{1}^{-1}=T_{b} \circ R \circ T_{b}^{-1} \in \mathscr{R}_{b}$. So $I_{1} \mathscr{R}_{0} I_{1}^{-1}=\mathscr{R}_{b}$.

Let $I_{2}: z^{\prime}=c \bar{z}+d$ where $|c|=1$ be an indirect isometry and let $R: z^{\prime}=k z$, where $|k|=1$, be a rotation about the origin. We have

$$
\begin{aligned}
& I_{2} \circ R \circ I_{2}^{-1}(z)=I_{2} \circ R\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)=I_{2}\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)\right) \\
& =c\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)+d=c\left(\bar{k}\left(c^{-1} z c^{-1} d\right)\right)+d=\bar{k} z-\bar{k} d+d\right.
\end{aligned}
$$

whereas, with $R^{\prime}: z^{\prime}=\bar{k} z$ as a rotation about the origin,
$T_{d} \circ R^{\prime} \circ T_{d}^{-1}(z)=T_{d} \circ R^{\prime}(z-d)=T_{d}(\bar{k}(z-d))=\bar{k}(z-d)+d=\bar{k} z-\bar{k} d+d$,
and so $I_{2} \circ R \circ I_{2}^{-1}-T_{d} \circ R^{\prime} \circ T_{d}^{-1} \in \mathscr{R}_{d}$. So $I_{2} \mathscr{R}_{0} I_{2}^{-1}=\mathscr{R}_{d}$.

## Corollary 48.5 (continued)

Proof. ... whereas
$T_{b} \circ R \circ T_{b}^{-1}(z)=T_{b} \circ R(z-b)=T_{b}(k(z-b))=k(z-b)+b=k z-k b+b$ and so $I_{1} \circ R \circ I_{1}^{-1}=T_{b} \circ R \circ T_{b}^{-1} \in \mathscr{R}_{b}$. So $I_{1} \mathscr{R}_{0} I_{1}^{-1}=\mathscr{R}_{b}$.

Let $I_{2}: z^{\prime}=c \bar{z}+d$ where $|c|=1$ be an indirect isometry and let $R: z^{\prime}=k z$, where $|k|=1$, be a rotation about the origin. We have

$$
\begin{aligned}
& I_{2} \circ R \circ I_{2}^{-1}(z)=I_{2} \circ R\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)=I_{2}\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)\right) \\
= & c\left(\overline{\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)\right.}+d=c\left(\bar{k}\left(c^{-1} z c^{-1} d\right)\right)+d=\bar{k} z-\bar{k} d+d\right.
\end{aligned}
$$

whereas, with $R^{\prime}: z^{\prime}=\bar{k} z$ as a rotation about the origin,
$T_{d} \circ R^{\prime} \circ T_{d}^{-1}(z)=T_{d} \circ R^{\prime}(z-d)=T_{d}(\bar{k}(z-d))=\bar{k}(z-d)+d=\bar{k} z-\bar{k} d+d$, and so $I_{2} \circ R \circ I_{2}^{-1}-T_{d} \circ R^{\prime} \circ T_{d}^{-1} \in \mathscr{R}_{d}$. So $I_{2} \mathscr{R}_{0} I_{2}^{-1}=\mathscr{R}_{d}$.

So the set of all conjugate subgroups $\mathscr{R}_{0}$ in group $\mathscr{I}$ is equal to the set of all rotation groups $\left\{\mathscr{R}_{w} \mid w \in \mathbb{C}\right\}$, as claimed.

## Corollary 48.5 (continued)

Proof. ... whereas
$T_{b} \circ R \circ T_{b}^{-1}(z)=T_{b} \circ R(z-b)=T_{b}(k(z-b))=k(z-b)+b=k z-k b+b$ and so $I_{1} \circ R \circ I_{1}^{-1}=T_{b} \circ R \circ T_{b}^{-1} \in \mathscr{R}_{b}$. So $I_{1} \mathscr{R}_{0} I_{1}^{-1}=\mathscr{R}_{b}$.

Let $I_{2}: z^{\prime}=c \bar{z}+d$ where $|c|=1$ be an indirect isometry and let $R: z^{\prime}=k z$, where $|k|=1$, be a rotation about the origin. We have

$$
\begin{aligned}
& I_{2} \circ R \circ I_{2}^{-1}(z)=I_{2} \circ R\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)=I_{2}\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)\right) \\
= & c\left(\overline{\left(k\left(\overline{c^{-1}} \bar{z}-\overline{c^{-1}} \bar{d}\right)\right.}+d=c\left(\bar{k}\left(c^{-1} z c^{-1} d\right)\right)+d=\bar{k} z-\bar{k} d+d\right.
\end{aligned}
$$

whereas, with $R^{\prime}: z^{\prime}=\bar{k} z$ as a rotation about the origin,
$T_{d} \circ R^{\prime} \circ T_{d}^{-1}(z)=T_{d} \circ R^{\prime}(z-d)=T_{d}(\bar{k}(z-d))=\bar{k}(z-d)+d=\bar{k} z-\bar{k} d+d$, and so $I_{2} \circ R \circ I_{2}^{-1}-T_{d} \circ R^{\prime} \circ T_{d}^{-1} \in \mathscr{R}_{d}$. So $I_{2} \mathscr{R}_{0} I_{2}^{-1}=\mathscr{R}_{d}$. That is, $I_{1} \mathscr{R}_{0} I_{1}^{-1}$ and $I_{2} \mathscr{R}_{0} I_{2}^{-1}$ are also rotation groups for $I_{1} \in \mathscr{I}_{+}$and $I_{2} \in \mathscr{I}_{-}$.
So the set of all conjugate subgroups $\mathscr{R}_{0}$ in group $\mathscr{I}$ is equal to the set of all rotation groups $\left\{\mathscr{R}_{w} \mid w \in \mathbb{C}\right\}$, as claimed.

