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Chapter V. Mappings of the Euclidean Plane
48. Groups of Translations and Rotations—Proofs of Theorems
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Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations

Theorem 48.1. The Group of Translations.
The group T of translations of the Gauss plane is transitive, and a normal
subgroup of the group I+ of direct isometries.

Proof. First, for T1 : z ′ = z + z1 and T2 : z ′ = z − z2, we have
T−1

2 : z ′ = z − z2 and T1 ◦ T−1
2 : z ′ = z − z2 + z1 is a translation and so

by Theorem 44.2, the set of translations is a subgroup of the direct
isometries I+.

For given z0 ∈ C, the translation T : z ′ = z + z0 maps 0 to z0 so that the
group is transitive.
To establish the normal subgroup claim, let I1 : z ′ = az + b ∈ I+ where
|a| = 1 and let Td : z ′ = z + d ∈ T . Then I−1

1 : z ′ = a−1z + a−1b and

I−1
1 ◦ Td ◦ I1 = I−1

1 ◦ Td(az + b) = I−1
1 ((az + b) + d)

= a−1((az + b) + d)− a−1b = z + a−1d ∈ T .

Since I1 is an arbitrary element of I+ and Td is an arbitrary element of T
then by Theorem 45.2, T is a normal subgroup of I+.
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Theorem 48.3. The Fixed Point of a Direct Isometry

Theorem 48.3. The Fixed Point of a Direct Isometry

Theorem 48.3. The Fixed Point of a Direct Isometry.
Let I1 be the direct isometry z ′ = az + b where |a| = 1 and a 6= 1. Then I1
has only one fixed point, given by w = b(1− a)−1, and I1 can be written
in the form z ′ = a(z − w) + w , which shows that I1 is a rotation about w .

Proof. If w is a fixed point under I , then w = aw + b so that
w = b(a− 1)−1, as claimed. Since z ′ = az + b then

z ′ = az + (1− a)w = az + w − aw = a(z − w) + w ,

as claimed. So I1 is composed of (1) a translation or w to 0, (2) a rotation
about 0 through an angle arg(a), and (3) a translation of 0 back to w .
This accomplishes a rotation about w through an angle arg(a).
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Theorem 48.5. Rotation Groups

Theorem 48.5. Rotation Groups

Theorem 48.5. Rotation Groups.
The set of rotations about the point w form a group Rw , and the groups
Rw , for all values of w , are isomorphic.

Proof. Let I1, I2 ∈ Rw . Say the canonical forms are I1 = Tw ◦ R ◦ T−1
w

and I − 2 = Tw ◦ R ′ ◦ T−1
w where R and R ′ are rotations about the origin

0. We have I−1
1 = Tw ◦ R−1 ◦ T−1

w . Now the rotations about the origin
form a group by Theorem 46.3, so R ′ ◦ R−1 is an element of this group
and hence is a rotation about the origin.

So

I2 ◦ I−1
1 = (Tw ◦ R ′ ◦ T−1

w ) ◦ (Tw ◦ R−1 ◦ T−1
w ) = Tw ◦ (R ′ ◦ R−1) ◦ T−1

w

is a rotation about w and hence I2 ◦ I−1
1 ∈ Rw . Since I1 and I2 are

arbitrary elements of Rw then by Theorem 44.2, Rw is a subgroup of, say,
I+. So Rw is a group, as claimed.
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Theorem 48.5. Rotation Groups

Theorem 48.5 (continued)

Proof (continued). Now consider groups Rw and R0 (rotation about the
origin). Define β : R0 → Rw as β(R) = Tw ◦ R ◦ T−1

w . Since
β : R0 → Rw as β(R) = Tw ◦ R ◦ T−1

w . Since R can range over all
rotations about 0, the β(R) ranges over all rotations about w . That is, β
is onto. Clearly, β is one to one. Now for R,R ′ ∈ R0 we have

β(R◦R ′) = Tw◦(R◦R ′)◦T−1
w = (Tw◦R◦T−1

w )◦(Tw◦R ′◦T−1
w ) = β(R)◦β(R ′)

and so β is a group isomorphism. So Rw
∼= R0. Since this holds for any

point w , for w1,w2 ∈ C we have Rw1
∼= R0 and Rw2

∼= R0 and so
Rw1

∼= Rw2 (group isomorphisms is an equivalence relation by Exercise
45.1).
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Corollary 48.5

Corollary 48.5

Corollary 48.5. The rotation groups Rw form a complete set of
conjugate subgroups of R0 within the group of all isometries I of the
Gauss plane C. That is,

{Rw | w ∈ C} = {I ◦R0 ◦ I−1 | I ∈ I }.

Proof. Every element of Rw has a canonical form Tw ◦ R ◦ T−1
w for some

R ∈ R0 (and conversely Tw ◦ R ◦ T−1
w is a rotation about w for any

R ∈ R0) so Rw = TwR0T
−1
w and all Rw are conjugates of R0.

We now need to show that I1R0I
−1
1 and I2R0I

−1
2 are rotation groups Rw

for some w , where I1 ∈ I+ and I2 ∈ I2. Let I1 : z ′ = az + b where
|a| = 1 be a direct isometry and let R : z ′kz where |k| = 1 be a rotation
about the origin. We have

I1 ◦ R ◦ I−1
1 (z) = I1 ◦ R(a−1z − a−1b)

= I1(k(a−1z − a−1b)) = a(k(a−1z − a−1b)) + b = kz − kb + b . . .
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Corollary 48.5

Corollary 48.5 (continued)

Proof. . . . whereas

Tb◦R◦T−1
b (z) = Tb◦R(z−b) = Tb(k(z−b)) = k(z−b)+b = kz−kb+b

and so I1 ◦ R ◦ I−1
1 = Tb ◦ R ◦ T−1

b ∈ Rb. So I1R0I
−1
1 = Rb.

Let I2 : z ′ = cz + d where |c | = 1 be an indirect isometry and let
R : z ′ = kz , where |k| = 1, be a rotation about the origin. We have

I2 ◦ R ◦ I−1
2 (z) = I2 ◦ R(c−1 z − c−1 d) = I2(k(c−1 z − c−1 d))

= c(k(c−1 z − c−1 d) + d = c(k(c−1zc−1d)) + d = kz − kd + d

whereas, with R ′ : z ′ = kz as a rotation about the origin,

Td◦R ′◦T−1
d (z) = Td◦R ′(z−d) = Td(k(z−d)) = k(z−d)+d = kz−kd+d ,

and so I2 ◦ R ◦ I−1
2 − Td ◦ R ′ ◦ T−1

d ∈ Rd . So I2R0I
−1
2 = Rd .

That is,
I1R0I

−1
1 and I2R0I

−1
2 are also rotation groups for I1 ∈ I+ and I2 ∈ I−.

So the set of all conjugate subgroups R0 in group I is equal to the set of
all rotation groups {Rw | w ∈ C}, as claimed.
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