Real Analysis

Chapter V. Mappings of the Euclidean Plane 49. Direct and Indirect Isometries-Proofs of Theorems

Table of contents

(1) Theorem 49.2. Indirect Isometries as Reflections

Theorem 49.2. Indirect Isometries as Reflections

Theorem 49.2. Indirect Isometries as Reflections.
An indirect isometry $z^{\prime}=a \bar{z}+b$ has invariant points if and only if $a \bar{b}+b=0$. If it has an invariant point, it is a line reflection and has a hole like of invariant points. Every line reflection is an indirect isometry.

Proof. The first claim is shown above.

Theorem 49.2. Indirect Isometries as Reflections

Theorem 49.2. Indirect Isometries as Reflections.
An indirect isometry $z^{\prime}=a \bar{z}+b$ has invariant points if and only if $a \bar{b}+b=0$. If it has an invariant point, it is a line reflection and has a hole like of invariant points. Every line reflection is an indirect isometry.

Proof. The first claim is shown above.
Suppose indirect isometry $z^{\prime}=a \bar{z}+b$, where $|a|=1$, has invariant point
w. Then $w=a \bar{w}+b$ and with $z^{\prime}=a \bar{z}+b$ we have (subtracting)

$$
z^{\prime}-w=(z \bar{z}+b)-(a \bar{w}+b)=a(\bar{z}-\bar{w})=a \overline{(z-w)} .
$$

Theorem 49.2. Indirect Isometries as Reflections

Theorem 49.2. Indirect Isometries as Reflections.
An indirect isometry $z^{\prime}=a \bar{z}+b$ has invariant points if and only if $a \bar{b}+b=0$. If it has an invariant point, it is a line reflection and has a hole like of invariant points. Every line reflection is an indirect isometry.

Proof. The first claim is shown above.
Suppose indirect isometry $z^{\prime}=a \bar{z}+b$, where $|a|=1$, has invariant point w. Then $w=a \bar{w}+b$ and with $z^{\prime}=a \bar{z}+b$ we have (subtracting)

$$
z^{\prime}-w=(z \bar{z}+b)-(a \bar{w}+b)=a(\bar{z}-\bar{w})=a \overline{(z-w)} .
$$

If $T_{w}: z^{\prime}=z+w$ is a translation, and $M_{a}: z^{\prime}=a \bar{z}$ is a reflection about the line through the origin which makes an angle $\arg (a) / 2$ with the real axis (see Definition 41.3), then

$$
\begin{gathered}
T_{w} \circ M_{a} \circ T_{w}^{-1}(z)=T_{w} \circ M_{a}(z-w)=T_{z}(\overline{a(z-w)}) \\
=a \overline{(z-w)}+w=\left(z^{\prime}-w\right)+w=z^{\prime} .
\end{gathered}
$$

Theorem 49.2. Indirect Isometries as Reflections

Theorem 49.2. Indirect Isometries as Reflections.
An indirect isometry $z^{\prime}=a \bar{z}+b$ has invariant points if and only if $a \bar{b}+b=0$. If it has an invariant point, it is a line reflection and has a hole like of invariant points. Every line reflection is an indirect isometry.

Proof. The first claim is shown above.
Suppose indirect isometry $z^{\prime}=a \bar{z}+b$, where $|a|=1$, has invariant point w. Then $w=a \bar{w}+b$ and with $z^{\prime}=a \bar{z}+b$ we have (subtracting)

$$
z^{\prime}-w=(z \bar{z}+b)-(a \bar{w}+b)=a(\bar{z}-\bar{w})=a \overline{(z-w)}
$$

If $T_{w}: z^{\prime}=z+w$ is a translation, and $M_{a}: z^{\prime}=a \bar{z}$ is a reflection about the line through the origin which makes an angle $\arg (a) / 2$ with the real axis (see Definition 41.3), then

$$
\begin{gathered}
T_{w} \circ M_{a} \circ T_{w}^{-1}(z)=T_{w} \circ M_{a}(z-w)=T_{z}(a \overline{(z-w)}) \\
=a \overline{(z-w)}+w=\left(z^{\prime}-w\right)+w=z^{\prime}
\end{gathered}
$$

Theorem 49.2 (continued 1)

Proof (continued). So the given isometry is $T_{w} \circ M_{a} \circ T_{w}^{-1}$ (a translation of w to 0 , a reflection about the line through the origin which makes an angle $\arg (a) / 2$ with the real axis, and a translation of 0 to $w)$. This is a reflection about the line through w that makes an angle of $\arg (a) / 2$ with the real axis. Hence if the direct isometry has an invariant point then it is a reflection about a line and this line of reflection is invariant, as claimed.

Now suppose we have a line reflection M about a line m. (See the next slide for a picture.) Let w be a point on m and let ℓ be a line through the origin which is parallel to m. Notice that the translation $T_{w}^{-1}: z^{\prime}=z-w$ maps line m to line ℓ. Let $M_{a}: z^{\prime}=a \bar{z}$ where $|a|=1$ and $\arg (a) / 2$ equals the angle that line ℓ makes with the real axis (so M_{a} is a reflection about line ℓ).

Theorem 49.2 (continued 1)

Proof (continued). So the given isometry is $T_{w} \circ M_{a} \circ T_{w}^{-1}$ (a translation of w to 0 , a reflection about the line through the origin which makes an angle $\arg (a) / 2$ with the real axis, and a translation of 0 to $w)$. This is a reflection about the line through w that makes an angle of $\arg (a) / 2$ with the real axis. Hence if the direct isometry has an invariant point then it is a reflection about a line and this line of reflection is invariant, as claimed.

Now suppose we have a line reflection M about a line m. (See the next slide for a picture.) Let w be a point on m and let ℓ be a line through the origin which is parallel to m. Notice that the translation $T_{w}^{-1}: z^{\prime}=z-w$ maps line m to line ℓ. Let $M_{a}: z^{\prime}=a \bar{z}$ where $|a|=1$ and $\arg (a) / 2$ equals the angle that line ℓ makes with the real axis (so M_{a} is a reflection about line ℓ).
$M(z)=T_{w} \circ M_{a} \circ T_{w}^{-1}(z)-a \bar{z}-a \bar{w}+w$ where $|a|=1$ (as shown above) so that M is an indirect isometry. So every line reflection is an indirect isometry, as claimed.

Theorem 49.2 (continued 1)

Proof (continued). So the given isometry is $T_{w} \circ M_{a} \circ T_{w}^{-1}$ (a translation of w to 0 , a reflection about the line through the origin which makes an angle $\arg (a) / 2$ with the real axis, and a translation of 0 to $w)$. This is a reflection about the line through w that makes an angle of $\arg (a) / 2$ with the real axis. Hence if the direct isometry has an invariant point then it is a reflection about a line and this line of reflection is invariant, as claimed.

Now suppose we have a line reflection M about a line m. (See the next slide for a picture.) Let w be a point on m and let ℓ be a line through the origin which is parallel to m. Notice that the translation $T_{w}^{-1}: z^{\prime}=z-w$ maps line m to line ℓ. Let $M_{a}: z^{\prime}=a \bar{z}$ where $|a|=1$ and $\arg (a) / 2$ equals the angle that line ℓ makes with the real axis (so M_{a} is a reflection about line ℓ). Then $M=T_{w} \circ M_{a} \circ T_{w}^{-1}$ and $M(z)=T_{w} \circ M_{a} \circ T_{w}^{-1}(z)-a \bar{z}-a \bar{w}+w$ where $|a|=1$ (as shown above) so that M is an indirect isometry. So every line reflection is an indirect isometry, as claimed.

Theorem 49.2 (continued 2)

Proof (continued).

