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Theorem 50.1

Theorem 50.1

Theorem 50.1. Every involutory isometry of the Gauss plane C is either a
line reflection, a half-turn, or the identity.

Proof. By Theorem 43.1, “The Main Theorem on Isometries of the Gauss
Plane,” there are only two types of isometries of the Gauss plane, direct
and indirect isometries.

For direct isometry M : z ′ = az + b where |a| = 1,
the square of the transformation is z ′ = a(az + b) + b = a2z + ab + b, so
this is involutory and is the identity transformation if only if a2 = 1 and
ab + b = 0. So we could have a = 1 and b = 0 which implies M is the
identity. We could also have a = −1 and b unrestricted, which implies
M : z ′ = −z + b = −(z − b/2) + b/2 which is a half-turn (see Section
48). So direct isometry M is involutory, as claimed.
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Theorem 50.1

Theorem 50.1 (continued)

Theorem 50.1. Every involutory isometry of the Gauss plane C is either a
line reflection, a half-turn, or the identity.

Proof (continued). For indirect isometry M : z ′ = az + b where |a| = 1,
the square of the isometry is

z ′ = a(az + b) + b = aaz + ab + b = |a|2z + ab + b = z + ab + b,

so this is the identity if only if ab + b = 0. By Theorem 49.2, “Indirect
Isometries as Reflections,” this means that M must be a line reflection, as
claimed.
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Theorem 50.2. The Composition of Two Reflections

Theorem 50.2. The Composition of Two Reflections

Theorem 50.2. The Composition of Two Reflections.
The composition of reflections in lines ` and m result in (i) a translation if
and only if the lines are parallel, or (ii) a rotation about the point of
intersection if and only if the lines intersect.

Proof. Let the reflection in ` be given by z = az + b with |a| = 1 and
ab + b = 0 by Theorem 49.2. The line ` makes an angle of arg(a)/2 with
the real axis. Let the reflection in m be given by z ′ = cz + d with |c | = 1,
cd + d = 0, and line m makes an angle of arg(c)/2 with the real axis. The
composition of the reflections is

z ′ = c(az + b) + d = caz + cb + d ∈ I+.

Now |ca| = 1, so either ca = 1, or |ca| = 1 and ca 6= 1.

(i) Suppose ca = 1. Then the composition is z ′ = z + cb + d , a
translation. Also, (ca)a = 1a or c |a|2 = a or c = a. So arg(a) = arg(c)
and line ` and m are parallel.
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Theorem 50.2. The Composition of Two Reflections

Theorem 50.2 (continued 1)

Proof (continued). Conversely, if line ` and m are parallel then
arg(a) = arg(c) and, since |a| = |c | then a = c and so ac = cc = |c |2 = 1
and the composition z ′ = z + cb + d is a translation. So the composition
is a translation if and only if the lines are parallel.

(ii) |ca| = 1 and ca 6= 1. Then the composition z ′ = czz + cb + d is a
direct isometry which is not a translation. Then by Theorem 48.3, “The
Fixed Point of a Direct Isometry,” the composition is a rotation about the
fixed point of the composition. The fixed point satisfies z = caz + cb + d
or (z − ca)z = cb + d or z = (cb + d)/(1− ca).

In Exercise 50.1, it is to
be shown that this point is left fixed by both reflections. Since the only
points fixed by a reflection are the points on the line of reflection, Exercise
50.1 implies that the composition is a rotation about the unique point of
intersection of lines ` and m (since ca 6= 1 then c 6= a and arg(c) = arg(a)
because |a| = |c | = 1; so that ` and m are not parallel).
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Theorem 50.2. The Composition of Two Reflections

Theorem 50.2 (continued 2)

Theorem 50.2. The Composition of Two Reflections.
The composition of reflections in lines ` and m result in (i) a translation if
and only if the lines are parallel, or (ii) a rotation about the point of
intersection if and only if the lines intersect.

Proof (continued). Conversely, if ` and m are not parallel then
arg(a) 6= arg(c) and ca 6= 1. So the composition is a rotation about the
point of intersection, as just shown.
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Theorem 50.3. A Reflection Glide is also a Glide Reflection

Theorem 50.3. A Reflection Glide is also a Glide Reflection

Theorem 50.3. A Reflection Glide is also a Glide Reflection.
A reflection in a line ` followed by a translation Tb results in an opposite
isometry without invariant points if and only if that ` is no perpendicular
to the position vector b. An opposite isometry without fixed points is
equivalent to a glide reflection, that is to a reflection in a line followed by
a translation parallel to the line.

Proof. Let the mapping be z ′ = az + b. If the mapping has fixed points
then, by Theorem 49.2, ab + b = 0. Then ab = −b and
arg(a) + arg(b) = arg(−b) = arc(b)± π so that arg(a) = 2arg(b)± π and
arg(a)/2 = arg(b)± π/2. Since arg(a)/2 is the angle the line reflection `
makes with the real axis, so ` is perpendicular to the “position vector” b.
So if ` is not perpendicular to the position vector b then the mapping has
no invariant points, as claimed.
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Theorem 50.3. A Reflection Glide is also a Glide Reflection

Theorem 50.3 (continued 1)

Proof (continued). Conversely, if line ` is perpendicular to position
vector b then arg(a)/2 = arg(b)± π/2 and we have ab + b = 0. So by
Theorem 49.2, the mapping has fixed points. In fact, the mapping has an
invariant line. Consider the line `′ parallel to line ` and a distance |b|/2
from ` in the “direction” b (so that for any point u on ` the point u + b/2
is on line `′). Consider arbitrary point u + b/2 on `′ where u is on `. The
reflection about line ` maps u + b/2 to u − b/2 and then the translation
Tb maps u − b/2 to u + b/2. So the mapping has line `′ invariant.

Now suppose z ′ = az + b, where |a| = 1, is an opposite isometry without
fixed points. Then by Theorem 49.2, ab + b 6= 0. Now
az + b = a(z − b/2) + b/2 + (ab + b)/2. Set d = (ab + b)/2 so that
d 6= 0. So we have z ′ = az + b as the composition Td ◦ Tb/2 ◦Ma ◦ T−1

b/2
since

Td ◦Tb/2◦Ma ◦T−1
b/2(z) = Td ◦Tb/2◦Ma(z−b/2) = Td ◦Tb/2(a(z − b/2))

= Td(a(z − b/2) + b/2) = a(z − b/2) + b/2 + d = z ′.
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Theorem 50.3. A Reflection Glide is also a Glide Reflection

Theorem 50.3 (continued 2)

Proof (continued). Now Tb/2 ◦Ma ◦ T−1
b/2 is the canonical form for a line

reflection by Theorem 49.2 where the line makes an angle arg(a)/2 with
the real axis. So the mapping is a line reflection followed by a translation.
We need to show that “position vector” d is parallel to line `. We have,
since |a| = aa = 1,(

d

|d

)2

− d2

dd
=

d

d
=

ab + b

ab + b
=

a(ab + b)

a(ab + b)
=

a(ab + b)

b + ab
= a

and so 2arg(d) = arg(d2) = arg(d2/|d |2) = arg(a), or arg(d) = arg(a)/2.
So position vector d is parallel to line ` and the mapping is a reflection
about a line ` followed by a translation parallel to line `. That is, the
opposite isometry without fixed points is a glide reflection , as claimed.
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Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem.
Suppose the points P on a line are mapped by a plane isometry onto the
points P ′ of another line. Then the midpoints of the line segments PP ′

either coincide or are distinct and collinear.

Proof. First, suppose the isometry is a
direct isometry. A direct isometry is
either a translation or it is a rotation
about a fixed point (see Theorem 42.1).
If it is a translation, then it maps a given
line to a line parallel to the given line.
Let points A,B,C , . . . lie on a line, and
suppose they are mapped onto points
A′,B ′,C ′, . . ., respectively, by the
translation. Then the points A′,B ′,C ′, . . .
are collinear by Theorem 43.3. Also, the midpoints of the segments
AA′,BB ′,CC ′, . . . lie on a line (see Figure 50.4), as claimed.

Figure 50.4
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Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem (continued 1)

Theorem 50.4.I. Hjelmslev’s Theorem.
Suppose the points P on a line are mapped by a plane isometry onto the
points P ′ of another line. Then the midpoints of the line segments PP ′

either coincide or are distinct and collinear.

Proof (continued). If the direct isometry is a rotation through an angle
equal to π, then the rotation is a “half-turn” and the midpoints coincide
with the center of rotation. We address other rotations below.

If the isometry is indirect, then by Note 50.B it is either a reflection in a
line ` (in which case the midpoints of AA′,BB ′,CC ′ . . . lie on `, or is a
glide-reflection (i.e., a reflection in ` followed by a translation parallel to
`), and again the midpoints of AA′,BB ′,CC ′, . . . lie on `.
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Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem (continued 2)

Proof (continued). We still need to address the case of a direct isometry
which is a rotation about a point through an angle other than π. We do
so algebraically in such a way as to prove the result for all direct isometries
(hence encompassing some of the above work already done). Let the
points A,B,C , . . . be represented by the complex numbers a, b, c , . . .,
respectively, and let the points A′,B ′,C ′, . . . be represented by the
complex numbers a′, b′, c ′, . . ., respectively. If c is the complex number
which represents any point C on the line AB, then c = ta + (1− t)b
where t is real and the ratio of the real numbers 1− t : t equals the ratio
of the signed lengths of the segments AC : CB by Theorem 3.1. Let c ′ be
the image of c under the direct isometry z ′ = pz + q where |p| = 1. Then

c ′ = pc + q = p(ta + (1− t)b) + q

= t(pa+q)+(1−t)(pb+q) = ta′+(1−t)b′. (∗)
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Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem (continued 3)

Theorem 50.4.I. Hjelmslev’s Theorem.
Suppose the points P on a line are mapped by a plane isometry onto the
points P ′ of another line. Then the midpoints of the line segments PP ′

either coincide or are distinct and collinear.

Proof (continued). Next, suppose that real numbers k and k ′ satisfy
k + k ′ = 1. Then by (∗) we have

k ′c + kc ′ = k ′(ta + (1− t)b) + k(ta′ + (1− t)b′)

= t(k ′a + ka′) + (1− t)(kb′ + k ′b). (∗∗)

Suppose k and k ′ are now fixed. If k ′a + ka′ 6= k ′b + kb′, then the points
k ′c + kc ′ “move” on a line as t varies and are distinct for distinct values of
t, as claimed.
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Theorem 50.4.I. Hjelmslev’s Theorem

Theorem 50.4.I. Hjelmslev’s Theorem (continued 4)

Proof (continued). If k ′a + ka′ = k ′b + kb′ then by (∗∗) we have
k ′c + kc ′ = k ′a + ka′ = k ′b + kb′. Then all the points which divide the
segment CC ′ in the ratio k : k ′ coincide. In terms of a, b, a′, b′ this implies
that k ′(a− b) = −k(a′ − b′). So if A and B are any two points on the one
line, and A′ and B ′ are the images of A and B on the other line, then we

have for these fixed values of k and k ′ that k ′
−→
AB = −k

−−→
A′B ′. In this case

the line containing points A and B is parallel to the line containing points
A′ and B ′ (we are using the difference of two complex numbers as a
direction vector of a line here).

Since k ′(a− b) = −k(a′ − b′) and we are
dealing with an isometry (so that |a− b| = |a′ − b′|), then we must have
k = k ′ = 1/2 and since k ′a + ka′ = k ′b + kb′ (or (a + a′)/2 = (b + b′)/2)
then the midpoints coincide, as claimed.

The computations are similar for an indirect isometry, based on the fact
that the conjugate of a real number (such as t, 1− t, k ad k ′) is the
number itself.
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Theorem 50.5

Theorem 50.5.

Theorem 50.5. A proper direct similitude z ′ = az + b, where |a| 6= 1, has
a unique fixed point. A proper indirect similitude z ′ = cz + d , where
|c | 6= 1, has a unique fixed point.

Proof. If w is a fixed point of z ′ = az + b, then w = aw + b or
w(1− a) = b. Since a 6= 1, then there is a unique value of w , namely
w = b/(1− a).

If w is a fixed point of z ′ = cz + d , then w = cw + d or, conjugating
both sides of this equation, w = cw + d . Now replacing w with cw + d in
this last equation, we have w = c(cw + d) + d . Then
w(1− cc) = cd + d or w(1− |c |2) = cd + d . Since |c | 6= 1 then there is
a unique value of w , namely w = (cd + d)/(1− |c |2).
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