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Theorem 51.1

Theorem 51.1

Theorem 51.1. Every product (i.e., composition) of three line reflections
is either a line reflection or a glide reflection.

Proof. Let the three reflections be the mappings z ′ = aiz + bi for
i = 1, 2, 3. The composition of the mappings is:

z ′ = a3(a2(a1z + b1) + b2) + b3 = a3(a2(a1z + b1) + b2) + b3

= a1a2a3z + a2a3b1 + a3b2 + b3 = (a1a2a3)z + (a2a3b1 + a3b2 + b3),

and this is an indirect isometry. By Note 50.B, an indirect isometry is
either a line reflection (when it has at least one fixed points, by Theorem
49.2) or a glide reflection (when it has no fixed points, by Theorem 50.3),
as claimed.
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Theorem 50.2. Condition for Two Lines to be Perpendicular

Theorem 50.2. Condition for Two Lines to be
Perpendicular

Theorem 51.2. Condition for Two Lines to be Perpendicular.
Two distinct lines ` and m are perpendicular to each other if and only if
the product (i.e., composition) of the reflections in ` and m is involutory,
and not the identity.

Proof. First, let line ` be perpendicular to line m, and let w be the point
of intersection. The canonical form of the reflection in ` is (as seen in the
proof of Theorem 49.2) T−1

w MaTw , and the reflection in m is T−1
w McTw

where Tw is the translation z ′ = z + w , Ma is a reflection z ′ = az , and Mc

is a reflection z ′ = cz , the line ` and m making angles of arg(a)/2 and
arg(c)/2, respectively, with the X -axis.

The product of these reflections is

M = (T−1
w MaTw )(T−1

w McTw ) = T−1
w MaMcTw .

Notice that M2 = T−1
w (MaMc)

2Tw , so if we show that MaMc is involutory,
then we have that M is involutory. Now MaMbis the mapping z ′ = zcz .
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Theorem 50.2. Condition for Two Lines to be Perpendicular

Theorem 50.2 (continued 1)

Proof (continued). Since ` is perpendicular to m, then
arg(a)/2− arg(c)/2 = ±π/2, or arg(a)− arg(c) = ±π or arg(a/c) = ±π.
Since |a| = |c | = 1 (see Definition 41.3 of reflection), then |a/c | = 1 and
a/c = cos π ± i sin w = −1 so that a = −c . Then
ac = −cc = −|c |2 = −1. So M = T−1

w MaMcTw is the transformation

z ′ = (TwMcMaT
−1
w )(z) = (TwMcMa)(T

−1
w (z)) = (TwMcMa)(z − w)

= (TwMc)(Ma(z − w)) = (TwMc(a(z − w)) = Tw (Mc(a(z − w))

= Tw (ca(z − w)) = ca(z − w) + w

= ca(z − w) + w = acz − acw + w = −z + 2w . (∗)

Notice that this is involutory (because −(−z + 2w) + 2w = z) and not
the identity, as claimed.
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Theorem 50.2. Condition for Two Lines to be Perpendicular

Theorem 50.2 (continued 2)

Theorem 51.2. Condition for Two Lines to be Perpendicular.
Two distinct lines ` and m are perpendicular to each other if and only if
the product (i.e., composition) of the reflections in ` and m is involutory,
and not the identity.

Proof (continued). Second for the converse, suppose M is involutory and
not the identity. By Theorem 50.2 the distinct lines are not parallel,
otherwise M would be a non-zero translation and so not involutory. Let `
and m intersect at the point w . Then as seen in (∗) above, we have
z ′ = acz − acw + w . This is a direct isometry (and so not a line
reflection) and, since it is by hypothesis involutory, then by Theorem 50.1
it is either a half-turn (i.e., a point-reflection) or the identity. But M is not
the identity by hypothesis, so it must be a half-turn. So
z ′ − w = acz − acw = ac(z − w) = −(z − w) and hence ac = −1. But
from ac = −1 we have arg(a) + arg(c) = ±π or
arg(a)/2− arg(c)/2 = ±pi/2. Therefore ` and m are perpendicular, as
claimed.
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Theorem 51.3. The Composition of Two Reflections

Theorem 51.3. The Composition of Two Reflections

Theorem 51.3. The product (i.e., composition) of the reflections in a
point w and in a line ` is involutory if and only if w lies on `.

Proof. First, suppose point w lies on line `. Let the reflection in ` be
M` : z ′ = az + b where ab + b = 0 (by Theorem 49.2) and let the
reflection in w be Mw : z ′ = −z + 2w (by Note 48.C). Then the product
MwM` = M` ◦Mw is M, say, were M is given by

z ′ = a(−z + 2w) + b = −az + 2aw + b. (∗)
Since w is on `, then w is invariant under M`; that is, w = aw + b.

Now
M is involutory, as claimed, because M2 is the mapping

z ′ = −a(−az + 2aw + b) + 2aw + b

= |a|2z − 2|a|2w − ab + 2aw + b

= z − 2w + 2aw + (b) + b since |a| = 1 and ab + b = 0

= z − 2w + 2(aw + b) = z − 2w + 2w since w = aw + b

= z .
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Theorem 51.3. The Composition of Two Reflections

Theorem 51.3. The Composition of Two Reflections
(continued)

Theorem 51.3. The product (i.e., composition) of the reflections in a
point w and in a line ` is involutory if and only if w lies on `.

Proof (continued). Second, suppose that M2 is involutory. Since M is
also an indirect isometry by (∗) (so it is not a half-turn or the identity),
then by Theorem 50.1 M must be a line reflection and so has fixed points.
By Note 49.A, the condition for z ′ = pz + q to have a first point is
pq + q = 0. Since we have M as the mapping z ′ = −az + 2aw + b by (∗),
then the condition pq + q = 0 implies for M that
−a(2aw + b) + 2aw + b = 0 or −2|a|2w − ab + 2aw + b = 0 or (since
|a| = 1) −2w − ab + 2aw + b = 0. This gives
−2w − (ab + b) + 2aw + 2b = 0 or, since ab + b = 0,
−2w + 2aw + 2b = 0, or w = aw + b.

Since M` : z ′ = az + b then we
have that w is invariant under M` and since M` is reflection in line ` then
point w must lie on line `, as claimed.
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Theorem 51.A

Theorem 51.A

Theorem 51.A. A translation can be written as the product
(composition) of reflections in parallel lines, and a rotation can be written
as the product of reflections in two lines through the center of rotation.

Proof. First, consider a translation. If the translation is the identity (i.e., a
translation by an amount of 0), then the translation is the product of two
reflections about the same line, and the claim holds. If the translation is of
the form z ′ = z + b where b 6= 0, the we can solve for a in the equation
ab + b = 0 to get a = −b/b (and so |a| = 1).

Consider the mapping
z ′ = az + b—a reflection since |a| = 1. This is an indirect isometry and
has fixed point b/2 (since ab/2 + b = (−b/b)(b/2) + b = b/2). By
Theorem 49.2 (and the definition of the canonical form of an indirect
isometry) that z ′ = az + b can be written in the form T−1

b/2MaTb/2, where

arg(a)/2 is the angle the line of reflection makes with the real axis and
b/2 is a point on the line of reflection.
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Theorem 51.A

Theorem 51.A (continued 1)

Theorem 51.A. A translation can be written as the product
(composition) of reflections in parallel lines, and a rotation can be written
as the product of reflections in two lines through the center of rotation.

Proof (continued). Also Ma : z ′ = az is a reflection about a line passing
through the origin 0, which makes and angle of arg(a)/2 with the real axis.
Composing z ′ = az + b with Ma : z ′ = az we have z ′ = a((az) + b = z + b
(since |a| = 1). Hence the given translation z ′ = z + b is the product of
reflection about parallel lines (as claimed), where the lines are a distance
|b|/2 apart with one line passing through the origin and both lines making
an angle of arg(a)/2 = arg(−b/b) with the real axis.
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Theorem 51.A

Theorem 51.A (continued 2)

Theorem 51.A. A translation can be written as the product
(composition) of reflections in parallel lines, and a rotation can be written
as the product of reflections in two lines through the center of rotation.

Proof (continued). Now consider a rotation. By Theorem 48.3, a
rotation is of the form z ′ = a(z − w) + w where |a| = 1 and w is the
center of the rotation. So the isometry is of the form T−1

w RaTw where w
is the center of rotation, and Ra is the rotation z ′ = az (using Pedoe’s
notation here; in terms of compositions, the isometry is of the form
Tw ◦ Ra ◦ T−1

w ; see Note 48.B). Now we have
Tw ◦ Ra ◦ T−1

w = (Tw ◦Ma ◦ T−1
w ) ◦ (Tw ◦M1 ◦ T−1

w ) where M1 is the
reflection z ′ = z and Ma is the reflection z ′ = zz (so that Ra = Ma ◦M1).
Now both (Tw ◦Ma ◦ T−1

w ) and (Tw ◦M1 ◦ T−1
w ) are reflections about

lines through w by Theorem 49.2, “Indirect Isometries as Reflections (see
also the definition of canonical form of such an isometry), so the rotations
has been written as a product of reflections in two lines through the center
of rotation, as claimed.
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Theorem 51.A (continued 2)
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Theorem 51.4. Isometries as Reflections

Theorem 51.4. Isometries as Reflections

Theorem 51.4. Isometries as Reflections.
Every isometry is the product (i.e., composition) of at most three
reflections. If the isometry has a fixed point, at most two line reflections
produce the isometry.

Proof. First, suppose that the isometry is direct. Then by Theorem 48.4,
“Direct Isometries and Rotations,” the isometry is either a translation of a
rotation. By Theorem 51.A a translation can be expressed as the product
of reflections in two parallel lines which are perpendicular to the vector
which give the direction of the translation and so the first claim holds for a
translation. Also by Theorem 51.A, a rotation through an angle 2A about
a point O is the product of reflections about two lines intersection at O at
an angle of A. So a direct isometry can be expressed as the product of two
reflections and the claim holds.
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Theorem 51.4. Isometries as Reflections

Theorem 51.4. Isometries as Reflections (continued 1)

Theorem 51.4. Isometries as Reflections.
Every isometry is the product (i.e., composition) of at most three
reflections. If the isometry has a fixed point, at most two line reflections
produce the isometry.

Proof (continued). Now suppose that the isometry is indirect. Then the
isometry is either a line reflection (when it has a fixed point) or a glide
reflection (when it has not fixed points); see Note 50.B. If the isometry is
a line reflection, then the claim holds. If the isometry is a glide reflection
then it is a reflection in a line followed by a translation parallel to the line
by Theorem 50.3; the translation is a product of reflections by Theorem
51.A (as described above), so that the isometry is then a product of three
reflections, and the claim holds. This establishes the first claim.
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Theorem 51.4. Isometries as Reflections

Theorem 51.4. Isometries as Reflections (continued 2)

Theorem 51.4. Isometries as Reflections.
Every isometry is the product (i.e., composition) of at most three
reflections. If the isometry has a fixed point, at most two line reflections
produce the isometry.

Proof (continued). If the isometry has a fixed point, then it is either a
rotation (when it is a direct isometry, by Note 48.A) or a reflection about
a line by (when it is an indirect isometry, by Theorem 49.2). A rotation is
the product of two reflections by Theorem 51.A (as described above), so
for an isometry with a fixed point at most two line reflections produce the
isometry, as claimed.
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