Real Analysis

Chapter VI. Mappings of the Inversive Plane

 53. Cross-Ratio—Proofs of Theorems

Table of contents

(1) Theorem 53.1
(2) Theorem 53.2
(3) Theorem 53.3
(4) Theorem 52.4
(5) Theorem 52.5

Theorem 53.1

Theorem 53.1. If a Möbius transformation has more than two distinct fixed points, then it is the identity mapping, $z^{\prime}=z$.

Proof. Let w be a fixed point of Möbius transformation $z^{\prime}=\frac{a z+b}{c z+d}$. Then $w=\frac{a w+b}{c w+d}$ and $c w^{2}+(d-a) w-b=0$. Unless this quadratic equation reduces to the identity $0=0$, then there are at most two possible values of w (i.e., at most two possible fixed points).

Theorem 53.1

Theorem 53.1. If a Möbius transformation has more than two distinct fixed points, then it is the identity mapping, $z^{\prime}=z$.

Proof. Let w be a fixed point of Möbius transformation $z^{\prime}=\frac{a z+b}{c z+d}$. Then $w=\frac{a w+b}{c w+d}$ and $c w^{2}+(d-a) w-b=0$. Unless this quadratic equation reduces to the identity $0=0$, then there are at most two possible values of w (i.e., at most two possible fixed points). If the quadratic equation does reduce to $0=0$, then we must have $c=b=d-a=0$ so that $z^{\prime}=\frac{a z}{a}=z$ is the identity mapping (notice that
$\Delta=a d-\stackrel{a}{b} c=a d \neq 0$ here, so we do not have $a=d=0$). So if the transformation fixes more than two distinct points then it is the identity, as claimed.

Theorem 53.1

Theorem 53.1. If a Möbius transformation has more than two distinct fixed points, then it is the identity mapping, $z^{\prime}=z$.

Proof. Let w be a fixed point of Möbius transformation $z^{\prime}=\frac{a z+b}{c z+d}$. Then $w=\frac{a w+b}{c w+d}$ and $c w^{2}+(d-a) w-b=0$. Unless this quadratic equation reduces to the identity $0=0$, then there are at most two possible values of w (i.e., at most two possible fixed points). If the quadratic equation does reduce to $0=0$, then we must have $c=b=d-a=0$ so that $z^{\prime}=\frac{a z}{a}=z$ is the identity mapping (notice that
$\Delta=a d-b c=a d \neq 0$ here, so we do not have $a=d=0$). So if the transformation fixes more than two distinct points then it is the identity, as claimed.

Theorem 53.2

Theorem 53.2. A Möbius transformation is uniquely determined by the assignment of three distinct points z_{j} and their three distinct image points $z_{j}^{\prime}(j=1,2,3)$.

Proof. Consider the transformation $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$. The determinant is $\Delta_{B}=\left(z_{1}-z_{3}\right)\left(-z_{1}\left(z_{2}-z_{3}\right)\right)-\left(-z_{2}\left(z_{1}-z_{3}\right)\right)\left(z_{2}-z_{3}\right)=$ $\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)\left(z_{2}-z_{1}\right) \neq 0$ since z_{1}, z_{2}, z_{3} are distinct complex numbers, and so B is a Möbius transformation. Notice that $B\left(z_{1}\right)=\infty$,
$B\left(z_{2}\right)=0$, and $B\left(z_{3}\right)=1$.

Theorem 53.2

Theorem 53.2. A Möbius transformation is uniquely determined by the assignment of three distinct points z_{j} and their three distinct image points $z_{j}^{\prime}(j=1,2,3)$.
Proof. Consider the transformation $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$. The determinant is $\Delta_{B}=\left(z_{1}-z_{3}\right)\left(-z_{1}\left(z_{2}-z_{3}\right)\right)-\left(-z_{2}\left(z_{1}-z_{3}\right)\right)\left(z_{2}-z_{3}\right)=$ $\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)\left(z_{2}-z_{1}\right) \neq 0$ since z_{1}, z_{2}, z_{3} are distinct complex numbers, and so B is a Möbius transformation. Notice that $B\left(z_{1}\right)=\infty$, $B\left(z_{2}\right)=0$, and $B\left(z_{3}\right)=1$. Now define $C: z^{\prime}=\frac{\left(z-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}$. Similar to above, the determinant is $\Delta_{C}=\left(z_{1}^{\prime}-z_{3}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)\left(z_{2}^{\prime}-z_{1}^{\prime}\right) \neq 0$ and so C is a Möbius transformation. Notice that $C\left(z_{1}^{\prime}\right)=\infty, C\left(z_{2}^{\prime}\right)=0$, and $C\left(z_{3}^{\prime}\right)=1$.

Theorem 53.2

Theorem 53.2. A Möbius transformation is uniquely determined by the assignment of three distinct points z_{j} and their three distinct image points $z_{j}^{\prime}(j=1,2,3)$.
Proof. Consider the transformation $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$. The determinant is $\Delta_{B}=\left(z_{1}-z_{3}\right)\left(-z_{1}\left(z_{2}-z_{3}\right)\right)-\left(-z_{2}\left(z_{1}-z_{3}\right)\right)\left(z_{2}-z_{3}\right)=$ $\left(z_{1}-z_{3}\right)\left(z_{2}-z_{3}\right)\left(z_{2}-z_{1}\right) \neq 0$ since z_{1}, z_{2}, z_{3} are distinct complex numbers, and so B is a Möbius transformation. Notice that $B\left(z_{1}\right)=\infty$, $B\left(z_{2}\right)=0$, and $B\left(z_{3}\right)=1$. Now define $C: z^{\prime}=\frac{\left(z-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}$. Similar to above, the determinant is $\Delta_{C}=\left(z_{1}^{\prime}-z_{3}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)\left(z_{2}^{\prime}-z_{1}^{\prime}\right) \neq 0$ and so C is a Möbius transformation. Notice that $C\left(z_{1}^{\prime}\right)=\infty, C\left(z_{2}^{\prime}\right)=0$, and $C\left(z_{3}^{\prime}\right)=1$.

Theorem 53.2 (continued)

Theorem 53.2. A Möbius transformation is uniquely determined by the assignment of three distinct points z_{j} and their three distinct image points $z_{j}^{\prime}(j=1,2,3)$.

Proof (continued). Now $C^{-1} \circ B=C^{-1} B$ is a Möbius transformation satisfying $\left(C^{-1} B\right)\left(z_{1}\right)=C^{-1}\left(B\left(z_{1}\right)\right)=C^{-1}(\infty)=z_{1}^{\prime}$, $\left(C^{-1} B\right)\left(z_{2}\right)=C^{-1}\left(B\left(z_{2}\right)\right)=C^{-1}(0)=z_{2}^{\prime}$, and $\left(C^{-1} B\right)\left(z_{3}\right)=C^{-1}\left(B\left(z_{3}\right)\right)=C^{-1}(1)=z_{3}^{\prime}$. Suppose A is any Möbius transformation that also satisfies $A\left(z_{1}\right)=z_{1}^{\prime}, A\left(z_{2}\right)=z_{2}^{\prime}$, and $A\left(z_{3}\right)=z_{3}^{\prime}$. Then $A^{-1} \circ\left(C^{-1} B\right)=A^{-1} C^{-1} B$ fixes the distinct points z_{1}, z_{2}, and z_{3}. Therefore, by Theorem 53.1, $A^{-1} C^{-1} B$ is the identity transformation and hence $A=C^{-1} B$ (this follows from the fact that an inverse transformation is unique; we can base this on properties of a group and Theorem 52.5). Therefore there is only one transformation mapping z_{j} to z_{j}^{\prime}, respectively, for $j=1,2,3$, as claimed. (This transformation is $C^{-1} B$.)

Theorem 53.2 (continued)

Theorem 53.2. A Möbius transformation is uniquely determined by the assignment of three distinct points z_{j} and their three distinct image points $z_{j}^{\prime}(j=1,2,3)$.

Proof (continued). Now $C^{-1} \circ B=C^{-1} B$ is a Möbius transformation satisfying $\left(C^{-1} B\right)\left(z_{1}\right)=C^{-1}\left(B\left(z_{1}\right)\right)=C^{-1}(\infty)=z_{1}^{\prime}$, $\left(C^{-1} B\right)\left(z_{2}\right)=C^{-1}\left(B\left(z_{2}\right)\right)=C^{-1}(0)=z_{2}^{\prime}$, and $\left(C^{-1} B\right)\left(z_{3}\right)=C^{-1}\left(B\left(z_{3}\right)\right)=C^{-1}(1)=z_{3}^{\prime}$. Suppose A is any Möbius transformation that also satisfies $A\left(z_{1}\right)=z_{1}^{\prime}, A\left(z_{2}\right)=z_{2}^{\prime}$, and $A\left(z_{3}\right)=z_{3}^{\prime}$. Then $A^{-1} \circ\left(C^{-1} B\right)=A^{-1} C^{-1} B$ fixes the distinct points z_{1}, z_{2}, and z_{3}. Therefore, by Theorem 53.1, $A^{-1} C^{-1} B$ is the identity transformation and hence $A=C^{-1} B$ (this follows from the fact that an inverse transformation is unique; we can base this on properties of a group and Theorem 52.5). Therefore there is only one transformation mapping z_{j} to z_{j}^{\prime}, respectively, for $j=1,2,3$, as claimed. (This transformation is $C^{-1} B$.)

Theorem 53.3

Theorem 53.3. The cross-ratio satisfies $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\left(z_{2}, z_{1} ; z_{4}, z_{3}\right)$.

Proof. By definition,

$$
\begin{aligned}
& \left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)} \\
= & \frac{\left(z_{2}-z_{4}\right)\left(z_{1}-z_{3}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}=\left(z_{2}, z_{1} ; z_{4}, z_{3}\right),
\end{aligned}
$$

as claimed.

Theorem 53.3

Theorem 53.3. The cross-ratio satisfies $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\left(z_{2}, z_{1} ; z_{4}, z_{3}\right)$.

Proof. By definition,

$$
\begin{aligned}
& \left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)} \\
= & \frac{\left(z_{2}-z_{4}\right)\left(z_{1}-z_{3}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}=\left(z_{2}, z_{1} ; z_{4}, z_{3}\right),
\end{aligned}
$$

as claimed.

Theorem 52.4

Theorem 53.4. The cross-ratio of four points is an invariant under Möbius transformations.

Proof. Let A be a Möbius transformation such that $A\left(z_{j}\right)=z_{j}^{\prime}$ for $j=1,2,3$. In the proof of Theorem 53.2, we saw for Möbius transformations B and C, where $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$ and $C: z^{\prime}=\frac{\left(z-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}$, that $A=C^{-1} \circ B=C^{-1} B$.

Theorem 52.4

Theorem 53.4. The cross-ratio of four points is an invariant under Möbius transformations.

Proof. Let A be a Möbius transformation such that $A\left(z_{j}\right)=z_{j}^{\prime}$ for $j=1,2,3$. In the proof of Theorem 53.2, we saw for Möbius
transformations B and C, where $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$ and
$C: z^{\prime}=\frac{\left(z-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}$, that $A=C^{-1} \circ B=C^{-1} B$. So
$A(z)=\left(C^{-1} B\right)(z)=z^{\prime}$ for all $z \in \mathbb{C}$ and, in particular, with $z=z_{4}$ we
have $\left(C^{-1} B\right)\left(z_{4}\right)=z_{4}^{\prime}$ or $B\left(z_{4}\right)=C\left(z_{4}^{\prime}\right)$. This gives

$$
B\left(z_{4}\right)=\frac{\left(\left(z_{4}\right)-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(\left(z_{4}\right)-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(\left(z_{4}^{\prime}\right)-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(\left(z_{4}^{\prime}\right)-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}=C\left(z_{4}^{\prime}\right),
$$

or $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\left(z_{1}^{\prime}, z_{2}^{\prime} ; z_{3}^{\prime}, z_{4}^{\prime}\right)$, as claimed.

Theorem 52.4

Theorem 53.4. The cross-ratio of four points is an invariant under Möbius transformations.

Proof. Let A be a Möbius transformation such that $A\left(z_{j}\right)=z_{j}^{\prime}$ for $j=1,2,3$. In the proof of Theorem 53.2, we saw for Möbius transformations B and C, where $B: z^{\prime}=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}$ and $C: z^{\prime}=\frac{\left(z-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}$, that $A=C^{-1} \circ B=C^{-1} B$. So
$A(z)=\left(C^{-1} B\right)(z)=z^{\prime}$ for all $z \in \mathbb{C}$ and, in particular, with $z=z_{4}$ we have $\left(C^{-1} B\right)\left(z_{4}\right)=z_{4}^{\prime}$ or $B\left(z_{4}\right)=C\left(z_{4}^{\prime}\right)$. This gives

$$
B\left(z_{4}\right)=\frac{\left(\left(z_{4}\right)-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(\left(z_{4}\right)-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(\left(z_{4}^{\prime}\right)-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(\left(z_{4}^{\prime}\right)-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}=C\left(z_{4}^{\prime}\right)
$$

or $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\left(z_{1}^{\prime}, z_{2}^{\prime} ; z_{3}^{\prime}, z_{4}^{\prime}\right)$, as claimed.

Theorem 52.5

Theorem 53.5. The cross-ratio of four points is real if and only if the four points lie on a straight line or a circle.

Proof. Let the four distinct points by z_{j} for $j=1,2,3,4$. First, suppose the cross-ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=k$ is real. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be three distinct points on the real axis. Let T by the unique Möbius transformation which maps z_{1}, z_{2}, z_{3} onto the three distinct points $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$, respectively (guaranteed to exist by Theorem 53.2). Let $z_{4}^{\prime}=T\left(z_{4}\right)$.

Theorem 52.5

Theorem 53.5. The cross-ratio of four points is real if and only if the four points lie on a straight line or a circle.

Proof. Let the four distinct points by z_{j} for $j=1,2,3,4$. First, suppose the cross-ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=k$ is real. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be three distinct points on the real axis. Let T by the unique Möbius transformation which maps z_{1}, z_{2}, z_{3} onto the three distinct points $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$, respectively (guaranteed to exist by Theorem 53.2). Let $z_{4}^{\prime}=T\left(z_{4}\right)$. By Theorem 53.4 (invariance of the cross-ratio under a Möbius transformation),

$$
k=\frac{\left(z_{4}-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z_{4}-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(z_{4}^{\prime}-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z_{4}^{\prime}-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)} .
$$

Hence $\left(z_{4}^{\prime}-z_{2}^{\prime}\right) /\left(z_{4}^{\prime}-z_{1}^{\prime}\right)=k\left(z_{2}^{\prime}-z_{3}^{\prime}\right) /\left(z_{1}^{\prime}-z_{3}^{\prime}\right)$ is real (since $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are real), and solving this equation (linear in z_{4}^{\prime}) for z_{4}^{\prime}, we see that z_{4}^{\prime} is real.

Theorem 52.5

Theorem 53.5. The cross-ratio of four points is real if and only if the four points lie on a straight line or a circle.

Proof. Let the four distinct points by z_{j} for $j=1,2,3,4$. First, suppose the cross-ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=k$ is real. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be three distinct points on the real axis. Let T by the unique Möbius transformation which maps z_{1}, z_{2}, z_{3} onto the three distinct points $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$, respectively (guaranteed to exist by Theorem 53.2). Let $z_{4}^{\prime}=T\left(z_{4}\right)$. By Theorem 53.4 (invariance of the cross-ratio under a Möbius transformation),

$$
k=\frac{\left(z_{4}-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z_{4}-z_{1}\right)\left(z_{2}-z_{3}\right)}=\frac{\left(z_{4}^{\prime}-z_{2}^{\prime}\right)\left(z_{1}^{\prime}-z_{3}^{\prime}\right)}{\left(z_{4}^{\prime}-z_{1}^{\prime}\right)\left(z_{2}^{\prime}-z_{3}^{\prime}\right)}
$$

Hence $\left(z_{4}^{\prime}-z_{2}^{\prime}\right) /\left(z_{4}^{\prime}-z_{1}^{\prime}\right)=k\left(z_{2}^{\prime}-z_{3}^{\prime}\right) /\left(z_{1}^{\prime}-z_{3}^{\prime}\right)$ is real (since $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ are real), and solving this equation (linear in z_{4}^{\prime}) for z_{4}^{\prime}, we see that z_{4}^{\prime} is real.

Theorem 52.5 (continued)

Proof (continued). So $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ all lie on the real axis (a line). Now T^{-1} is a Möbius transformation, so by Theorem $52.3 T^{-1}$ maps the real axis to a circle or line. Since T^{-1} maps $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ to $z_{1}, z_{2}, z_{3}, z_{4}$, respectively, then it must be that $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a straight line or circle when $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ is real, as claimed.

Now suppose the four given points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a line or a circle. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be distinct points on the real axis. Then by Theorem 53.2 there is a unique Möbius transformation T which maps z_{j} to z_{j}^{\prime} for $j=1,2,3$. Since T maps a circle of line to a circle or line by Theorem 52.3, then $T\left(z_{1}\right)=z_{1}^{\prime}, T\left(z_{2}\right)=z_{2}^{\prime}, T\left(z_{3}\right)=z_{3}^{\prime}$ lie on a line or circle; by choice, $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ lie on the real axis so it must be that z_{4}^{\prime} also lies on the real axis.

Theorem 52.5 (continued)

Proof (continued). So $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ all lie on the real axis (a line). Now T^{-1} is a Möbius transformation, so by Theorem $52.3 T^{-1}$ maps the real axis to a circle or line. Since T^{-1} maps $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ to $z_{1}, z_{2}, z_{3}, z_{4}$, respectively, then it must be that $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a straight line or circle when $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ is real, as claimed.

Now suppose the four given points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a line or a circle. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be distinct points on the real axis. Then by Theorem 53.2 there is a unique Möbius transformation T which maps z_{j} to z_{j}^{\prime} for $j=1,2,3$. Since T maps a circle of line to a circle or line by Theorem 52.3, then $T\left(z_{1}\right)=z_{1}^{\prime}, T\left(z_{2}\right)=z_{2}^{\prime}, T\left(z_{3}\right)=z_{3}^{\prime}$ lie on a line or circle; by choice, $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ lie on the real axis so it must be that z_{4}^{\prime} also lies on the real axis. Since $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ are all real, then the cross-ratio $\left(z_{1}^{\prime}, z_{2}^{\prime} ; z_{3}^{\prime}, z_{4}^{\prime}\right)$ is real. Since the cross-ratio is invariant under Möbius transformation T^{-1}, then we must also have ($z_{1}, z_{2} ; z_{3}, z_{4}$) is real, as claimed.

Theorem 52.5 (continued)

Proof (continued). So $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ all lie on the real axis (a line). Now T^{-1} is a Möbius transformation, so by Theorem $52.3 T^{-1}$ maps the real axis to a circle or line. Since T^{-1} maps $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ to $z_{1}, z_{2}, z_{3}, z_{4}$, respectively, then it must be that $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a straight line or circle when $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ is real, as claimed.

Now suppose the four given points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a line or a circle. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be distinct points on the real axis. Then by Theorem 53.2 there is a unique Möbius transformation T which maps z_{j} to z_{j}^{\prime} for $j=1,2,3$. Since T maps a circle of line to a circle or line by Theorem 52.3, then $T\left(z_{1}\right)=z_{1}^{\prime}, T\left(z_{2}\right)=z_{2}^{\prime}, T\left(z_{3}\right)=z_{3}^{\prime}$ lie on a line or circle; by choice, $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ lie on the real axis so it must be that z_{4}^{\prime} also lies on the real axis. Since $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}$ are all real, then the cross-ratio $\left(z_{1}^{\prime}, z_{2}^{\prime} ; z_{3}^{\prime}, z_{4}^{\prime}\right)$ is real. Since the cross-ratio is invariant under Möbius transformation T^{-1}, then we must also have ($z_{1}, z_{2} ; z_{3}, z_{4}$) is real, as claimed.

