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Theorem 53.1

Theorem 53.1

Theorem 53.1. If a Möbius transformation has more than two distinct
fixed points, then it is the identity mapping, z ′ = z .

Proof. Let w be a fixed point of Möbius transformation z ′ =
az + b

cz + d
.

Then w =
aw + b

cw + d
and cw2 + (d − a)w − b = 0. Unless this quadratic

equation reduces to the identity 0 = 0, then there are at most two possible
values of w (i.e., at most two possible fixed points).

If the quadratic
equation does reduce to 0 = 0, then we must have c = b = d − a = 0 so

that z ′ =
az

a
= z is the identity mapping (notice that

∆ = ad − bc = ad 6= 0 here, so we do not have a = d = 0). So if the
transformation fixes more than two distinct points then it is the identity,
as claimed.
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Theorem 53.1. If a Möbius transformation has more than two distinct
fixed points, then it is the identity mapping, z ′ = z .

Proof. Let w be a fixed point of Möbius transformation z ′ =
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Theorem 53.2

Theorem 53.2

Theorem 53.2. A Möbius transformation is uniquely determined by the
assignment of three distinct points zj and their three distinct image points
z ′j (j = 1, 2, 3).

Proof. Consider the transformation B : z ′ =
(z − z2)(z1 − z3)

(z − z1)(z2 − z3)
. The

determinant is ∆B = (z1 − z3)(−z1(z2 − z3))− (−z2(z1 − z3))(z2 − z3) =
(z1 − z3)(z2 − z3)(z2 − z1) 6= 0 since z1, z2, z3 are distinct complex
numbers, and so B is a Möbius transformation. Notice that B(z1) = ∞,

B(z2) = 0, and B(z3) = 1.

Now define C : z ′ =
(z − z ′2)(z

′
1 − z ′3)

(z − z ′1)(z
′
2 − z ′3)

. Similar

to above, the determinant is ∆C = (z ′1 − z ′3)(z
′
2 − z ′3)(z

′
2 − z ′1) 6= 0 and so

C is a Möbius transformation. Notice that C (z ′1) = ∞, C (z ′2) = 0, and
C (z ′3) = 1.
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Theorem 53.2

Theorem 53.2 (continued)

Theorem 53.2. A Möbius transformation is uniquely determined by the
assignment of three distinct points zj and their three distinct image points
z ′j (j = 1, 2, 3).

Proof (continued). Now C−1 ◦ B = C−1B is a Möbius transformation
satisfying (C−1B)(z1) = C−1(B(z1)) = C−1(∞) = z ′1,
(C−1B)(z2) = C−1(B(z2)) = C−1(0) = z ′2, and
(C−1B)(z3) = C−1(B(z3)) = C−1(1) = z ′3. Suppose A is any Möbius
transformation that also satisfies A(z1) = z ′1, A(z2) = z ′2, and A(z3) = z ′3.
Then A−1 ◦ (C−1B) = A−1C−1B fixes the distinct points z1, z2, and z3.
Therefore, by Theorem 53.1, A−1C−1B is the identity transformation and
hence A = C−1B (this follows from the fact that an inverse transformation
is unique; we can base this on properties of a group and Theorem 52.5).
Therefore there is only one transformation mapping zj to z ′j , respectively,

for j = 1, 2, 3, as claimed. (This transformation is C−1B.)
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satisfying (C−1B)(z1) = C−1(B(z1)) = C−1(∞) = z ′1,
(C−1B)(z2) = C−1(B(z2)) = C−1(0) = z ′2, and
(C−1B)(z3) = C−1(B(z3)) = C−1(1) = z ′3. Suppose A is any Möbius
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Theorem 53.3

Theorem 53.3

Theorem 53.3. The cross-ratio satisfies (z1, z2; z3, z4) = (z2, z1; z4, z3).

Proof. By definition,

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)

=
(z2 − z4)(z1 − z3)

(z1 − z4)(z2 − z3)
= (z2, z1; z4, z3),

as claimed.
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Theorem 52.4

Theorem 52.4

Theorem 53.4. The cross-ratio of four points is an invariant under
Möbius transformations.

Proof. Let A be a Möbius transformation such that A(zj) = z ′j for
j = 1, 2, 3. In the proof of Theorem 53.2, we saw for Möbius

transformations B and C , where B : z ′ =
(z − z2)(z1 − z3)

(z − z1)(z2 − z3)
and

C : z ′ =
(z − z ′2)(z

′
1 − z ′3)

(z − z ′1)(z
′
2 − z ′3)

, that A = C−1 ◦ B = C−1B.

So

A(z) = (C−1B)(z) = z ′ for all z ∈ C and, in particular, with z = z4 we
have(C−1B)(z4) = z ′4 or B(z4) = C (z ′4). This gives

B(z4) =
((z4)− z2)(z1 − z3)

((z4)− z1)(z2 − z3)
=

((z ′4)− z ′2)(z
′
1 − z ′3)

((z ′4)− z ′1)(z
′
2 − z ′3)

= C (z ′4),

or (z1, z2; z3, z4) = (z ′1, z
′
2; z

′
3, z

′
4), as claimed.
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Möbius transformations.
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Theorem 52.5

Theorem 52.5

Theorem 53.5. The cross-ratio of four points is real if and only if the
four points lie on a straight line or a circle.

Proof. Let the four distinct points by zj for j = 1, 2, 3, 4. First, suppose
the cross-ratio (z1, z2; z3, z4) = k is real. Let z ′1, z

′
2, z

′
3 be three distinct

points on the real axis. Let T by the unique Möbius transformation which
maps z1, z2, z3 onto the three distinct points z ′1, z

′
2, z

′
3, respectively

(guaranteed to exist by Theorem 53.2). Let z ′4 = T (z4).

By Theorem 53.4
(invariance of the cross-ratio under a Möbius transformation),

k =
(z4 − z2)(z1 − z3)

(z4 − z1)(z2 − z3)
=

(z ′4 − z ′2)(z
′
1 − z ′3)

(z ′4 − z ′1)(z
′
2 − z ′3)

.

Hence (z ′4− z ′2)/(z ′4− z ′1) = k(z ′2− z ′3)/(z ′1− z ′3) is real (since z ′1, z
′
2, z

′
3 are

real), and solving this equation (linear in z ′4) for z ′4, we see that z ′4 is real.
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k =
(z4 − z2)(z1 − z3)

(z4 − z1)(z2 − z3)
=

(z ′4 − z ′2)(z
′
1 − z ′3)

(z ′4 − z ′1)(z
′
2 − z ′3)

.

Hence (z ′4− z ′2)/(z ′4− z ′1) = k(z ′2− z ′3)/(z ′1− z ′3) is real (since z ′1, z
′
2, z

′
3 are

real), and solving this equation (linear in z ′4) for z ′4, we see that z ′4 is real.

() Real Analysis December 14, 2021 8 / 9



Theorem 52.5

Theorem 52.5

Theorem 53.5. The cross-ratio of four points is real if and only if the
four points lie on a straight line or a circle.

Proof. Let the four distinct points by zj for j = 1, 2, 3, 4. First, suppose
the cross-ratio (z1, z2; z3, z4) = k is real. Let z ′1, z

′
2, z

′
3 be three distinct

points on the real axis. Let T by the unique Möbius transformation which
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Theorem 52.5

Theorem 52.5 (continued)

Proof (continued). So z ′1, z
′
2, z

′
3, z

′
4 all lie on the real axis (a line). Now

T−1 is a Möbius transformation, so by Theorem 52.3 T−1 maps the real
axis to a circle or line. Since T−1 maps z ′1, z

′
2, z

′
3, z

′
4 to z1, z2, z3, z4,

respectively, then it must be that z1, z2, z3, z4 lie on a straight line or circle
when (z1, z2; z3, z4) is real, as claimed.

Now suppose the four given points z1, z2, z3, z4 lie on a line or a circle. Let
z ′1, z

′
2, z

′
3 be distinct points on the real axis. Then by Theorem 53.2 there

is a unique Möbius transformation T which maps zj to z ′j for j = 1, 2, 3.
Since T maps a circle of line to a circle or line by Theorem 52.3, then
T (z1) = z ′1, T (z2) = z ′2, T (z3) = z ′3 lie on a line or circle; by choice,
z ′1, z

′
2, z

′
3 lie on the real axis so it must be that z ′4 also lies on the real axis.

Since z ′1, z
′
2, z

′
3, z

′
4 are all real, then the cross-ratio (z ′1, z

′
2; z

′
3, z

′
4) is real.

Since the cross-ratio is invariant under Möbius transformation T−1, then
we must also have (z1, z2; z3, z4) is real, as claimed.
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Theorem 52.5

Theorem 52.5 (continued)
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Theorem 52.5

Theorem 52.5 (continued)
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