Real Analysis # Chapter VI. Mappings of the Inversive Plane 55. *M*-Transformations—Proofs of Theorems Real Analysis December 18, 2021 1 / Theorem 55. # Theorem 55.2 (continued 1) **Proof (continued).** Now any M-transformation which maps point A and vector ξ onto point A and vector α , must map \mathscr{C}_X onto \mathscr{C}_A since \mathscr{C}_X is mapped onto a circle through A with direction α at A and orthogonal to ω , and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_A . Next label the points of intersection of \mathscr{C}_X and \mathscr{C}_A with ω , such that the direction ξ of \mathscr{C}_X is that of X_1 towards X_2 and such that the direction α of \mathscr{C}_A is that of A_1 towards A_2 (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter). The M-transformation must map X_1 to A_1 , map X_2 to A_2 , and map X to A (again, this follows from a parametric presentation of the circle and tangent vectors). By Theorem 53.2, three points and their images uniquely determine a Möbius transformation. We just need to show that this unique Möbius transformation is in fact an M-transformation. ### Theorem 55.2 **Theorem 55.2.** Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique M-transformation which maps X on A, and maps the direction ξ onto the direction α . **Proof.** First, by Exercise 55.1 there is exactly one circle orthogonal to ω that passes through point X and has vector ξ as its direction vector at X (Pedoe describes the direction-condition in terms of tangency to the [Euclidean] straight line determined by vector ξ .) Denote this circle as \mathscr{C}_X , and let X_1 and X_2 be the points of intersection of \mathscr{C}_X and ω . Similarly, let \mathscr{C}_A be the unique circle through point A with direction α at A and orthogonal to ω . Let A_1 and A_2 be the points of intersection of \mathscr{C}_X with ω . Since Möbius transformations preserve angles of intersection by Theorem 54.3, and an M-transformation maps ω onto itself, circle orthogonal to ω are mapped onto circles orthogonal to ω . December 18, 2021 Theorem 55 # Theorem 55.2 (continued 2) **Theorem 55.2.** Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique M-transformation which maps X on A, and maps the direction ξ onto the direction α . **Proof (continued).** Now the Möbius transformation maps the circle through X_1 and X_2 which is orthogonal to \mathscr{C}_X (namely, circle ω) must be mapped to the circle through A_1 and A_2 which is orthogonal to \mathscr{C}_A (also circle ω ; the preservation of orthogonality is given by Theorem 54.3). That is, ω is mapped to ω by the Möbius transformation. Since the interior point X of Ω is mapped to the interior point A of Ω , then the interior of ω is mapped to the interior of ω ; that is, the unique Möbius transformation is an M-transformation, as needed. Real Analysis December 18, 2021 4 / 9 () Real Analysis December 18, 2021 5 / **Corollary 55.A.** Let \mathscr{C}_A be a circle through point A of Ω to ω , and let \mathscr{C}_B be a circle through a point B of Ω orthogonal to ω . Then there exist just two M-transformations which map A on B and \mathcal{C}_A on \mathcal{C}_B . **Proof.** For a given direction tangent to \mathscr{C}_A at point A and a given tangent to \mathscr{C}_B at point B there is, by Theorem 55.2, a unique M-transformation mapping A to X and mapping \mathcal{C}_A to \mathcal{C}_B . Since there are two directions tangent to \mathscr{C}_B at B then for a given direction tangent to \mathscr{C}_A at A there are two such M-transformations (reversing the direction of the tangent to \mathscr{C}_A at A results in the same two M-transformations). Therefore, there are two such *M*-transformations, as claimed. Real Analysis December 18, 2021 December 18, 2021 # Theorem 55.3 (continued 1) **Theorem 55.3.** There exists a unique *M*-transformation which interchanges two given points A and B of Ω . **Proof (continued).** So the only possible *M*-transformation which interchanges points A and B is the one which reverses the orientation of \mathscr{C} . Let M' be the M-transformation which maps A to B and reverses the orientation of \mathscr{C} . We next show that M' maps B to A, completing the proof. Let X_1 and X_2 be the points of intersection of $\mathscr C$ with ω . Let the transform of B under M' be A' (we will show that A' = B, as desired). Since \mathscr{C} and ω are mapped by M' onto themselves, the set of two intersections X_1 and X_2 of $\mathscr C$ and ω is mapped onto itself. Hence either X_1 is mapped to X_1 and X_2 is mapped to X_2 , or X_1 is mapped to X_2 and X_2 is mapped to X_1 . Since M' reverses the orientation of \mathscr{C} , then we cannot have M' fixing X_1 and X_2 . So we must have X_1 and X_2 interchanged by M'. **Theorem 55.3.** There exists a unique *M*-transformation which interchanges two given points A and B of Ω . **Proof.** Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any M-transformation which maps point A to point B and maps point B to point A must map the circle $\mathscr C$ to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles). By Corollary 55.A, by taking $\mathscr{C} = \mathscr{C}_A = \mathscr{C}_B$, we have that there are only two M-transformations which map A to B and \mathscr{C} to itself. The proof of Corollary 55.A shows that one of the M-transformations preserves the orientation on $\mathscr C$ and the other reverses the orientation. However, the M-transformation which preserves the orientation on \mathscr{C} cannot map A to B (since the orientation of \mathscr{C} from A to B is opposite that from B to A). # Theorem 55.3 (continued 2) **Theorem 55.3.** There exists a unique *M*-transformation which interchanges two given points A and B of Ω . **Proof** (continued). Since the cross-ratio is invariant under a Möbius transformation by Theorem 53.4, then $$(X_1, X_2; A, B) = (M'(X_1), M'(X_2); M'(A), M'(B)) = (X_2, X_1; B, A').$$ For any cross-ratio we have by Theorem 53.3 that $(X_1, X_2; A, B) = (X_2, X_1; B, A)$, so that we must have $(X_2, X_1; B, A) = (X_2, X_1; B, A')$. So, by the definition of cross-ratio, we have A = A', as desired. Real Analysis December 18, 2021 December 18, 2021