Real Analysis

Chapter VI. Mappings of the Inversive Plane 55. *M*-Transformations—Proofs of Theorems

Real Analysis

2 Corollary 55.A

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique *M*-transformation which maps X on A, and maps the direction ξ onto the direction α .

Proof. First, by Exercise 55.1 there is exactly one circle orthogonal to ω that passes through point X and has vector ξ as its direction vector at X (Pedoe describes the direction-condition in terms of tangency to the [Euclidean] straight line determined by vector ξ .) Denote this circle as \mathscr{C}_X , and let X_1 and X_2 be the points of intersection of \mathscr{C}_X and ω . Similarly, let \mathscr{C}_A be the unique circle through point A with direction α at A and orthogonal to ω . Let A_1 and A_2 be the points of intersection of \mathscr{C}_X with ω . Since Möbius transformations preserve angles of intersection by Theorem 54.3, and an *M*-transformation maps ω onto itself, circle orthogonal to ω .

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique *M*-transformation which maps X on A, and maps the direction ξ onto the direction α .

Proof. First, by Exercise 55.1 there is exactly one circle orthogonal to ω that passes through point X and has vector ξ as its direction vector at X (Pedoe describes the direction-condition in terms of tangency to the [Euclidean] straight line determined by vector ξ .) Denote this circle as \mathscr{C}_X , and let X_1 and X_2 be the points of intersection of \mathscr{C}_X and ω . Similarly, let \mathscr{C}_A be the unique circle through point A with direction α at A and orthogonal to ω . Let A_1 and A_2 be the points of intersection of \mathscr{C}_X with ω . Since Möbius transformations preserve angles of intersection by Theorem 54.3, and an *M*-transformation maps ω onto itself, circle orthogonal to ω are mapped onto circles orthogonal to ω .

Theorem 55.2 (continued 1)

Proof (continued). Now any *M*-transformation which maps point *A* and vector ξ onto point *A* and vector α , must map \mathscr{C}_X onto \mathscr{C}_A since \mathscr{C}_X is mapped onto a circle through *A* with direction α at *A* and orthogonal to ω , and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_A .

Next label the points of intersection of C_X and C_A with ω , such that the direction ξ of C_X is that of X_1 towards X_2 and such that the direction α of C_A is that of A_1 towards A_2 (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter).

Real Analysis

Theorem 55.2 (continued 1)

Proof (continued). Now any *M*-transformation which maps point *A* and vector ξ onto point *A* and vector α , must map \mathscr{C}_X onto \mathscr{C}_A since \mathscr{C}_X is mapped onto a circle through *A* with direction α at *A* and orthogonal to ω , and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_A .

Next label the points of intersection of \mathscr{C}_X and \mathscr{C}_A with ω , such that the direction ξ of \mathscr{C}_X is that of X_1 towards X_2 and such that the direction α of \mathscr{C}_A is that of A_1 towards A_2 (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter). The *M*-transformation must map X_1 to A_1 , map X_2 to A_2 , and map X to A (again, this follows from a parametric presentation of the circle and tangent vectors). By Theorem 53.2, three points and their images uniquely determine a Möbius transformation. We just need to show that this unique Möbius transformation is in fact an *M*-transformation.

Theorem 55.2 (continued 1)

Proof (continued). Now any *M*-transformation which maps point *A* and vector ξ onto point *A* and vector α , must map \mathscr{C}_X onto \mathscr{C}_A since \mathscr{C}_X is mapped onto a circle through *A* with direction α at *A* and orthogonal to ω , and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_A .

Next label the points of intersection of \mathscr{C}_X and \mathscr{C}_A with ω , such that the direction ξ of \mathscr{C}_X is that of X_1 towards X_2 and such that the direction α of \mathscr{C}_A is that of A_1 towards A_2 (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter). The *M*-transformation must map X_1 to A_1 , map X_2 to A_2 , and map X to A (again, this follows from a parametric presentation of the circle and tangent vectors). By Theorem 53.2, three points and their images uniquely determine a Möbius transformation. We just need to show that this unique Möbius transformation is in fact an *M*-transformation.

Theorem 55.2 (continued 2)

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique *M*-transformation which maps X on A, and maps the direction ξ onto the direction α .

Proof (continued). Now the Möbius transformation maps the circle through X_1 and X_2 which is orthogonal to \mathscr{C}_X (namely, circle ω) must be mapped to the circle through A_1 and A_2 which is orthogonal to \mathscr{C}_A (also circle ω ; the preservation of orthogonality is given by Theorem 54.3). That is, ω is mapped to ω by the Möbius transformation. Since the interior point X of Ω is mapped to the interior point A of Ω , then the interior of ω is mapped to the interior of ω ; that is, the unique Möbius transformation is an M-transformation, as needed.

Corollary 55.A. Let \mathscr{C}_A be a circle through point A of Ω to ω , and let \mathscr{C}_B be a circle through a point B of Ω orthogonal to ω . Then there exist just two M-transformations which map A on B and \mathscr{C}_A on \mathscr{C}_B .

Proof. For a given direction tangent to \mathscr{C}_A at point A and a given tangent to \mathscr{C}_B at point B there is, by Theorem 55.2, a unique M-transformation mapping A to X and mapping \mathscr{C}_A to \mathscr{C}_B . Since there are two directions tangent to \mathscr{C}_B at B then for a given direction tangent to \mathscr{C}_A at A there are two such M-transformations (reversing the direction of the tangent to \mathscr{C}_A at A results in the same two M-transformations). Therefore, there are two such M-transformations, as claimed.

Corollary 55.A. Let \mathscr{C}_A be a circle through point A of Ω to ω , and let \mathscr{C}_B be a circle through a point B of Ω orthogonal to ω . Then there exist just two M-transformations which map A on B and \mathscr{C}_A on \mathscr{C}_B .

Proof. For a given direction tangent to \mathscr{C}_A at point A and a given tangent to \mathscr{C}_B at point B there is, by Theorem 55.2, a unique M-transformation mapping A to X and mapping \mathscr{C}_A to \mathscr{C}_B . Since there are two directions tangent to \mathscr{C}_B at B then for a given direction tangent to \mathscr{C}_A at A there are two such M-transformations (reversing the direction of the tangent to \mathscr{C}_A at A results in the same two M-transformations). Therefore, there are two such M-transformations, as claimed.

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof. Let \mathscr{C} be the unique circle through *A* and *B* that is orthogonal to ω (as given by Theorem 55.2). Any *M*-transformation which maps point *A* to point *B* and maps point *B* to point *A* must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles).

Real Analysis

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof. Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any *M*-transformation which maps point A to point B and maps point B to point A must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles). By Corollary 55.A, by taking $\mathscr{C} = \mathscr{C}_A = \mathscr{C}_B$, we have that there are only two *M*-transformations which map A to B and \mathscr{C} to itself. The proof of Corollary 55.A shows that one of the *M*-transformations preserves the orientation on \mathscr{C} and the other reverses the orientation. However, the *M*-transformation which preserves the orientation on \mathscr{C} cannot map A to B (since the orientation of \mathscr{C} from A to B is opposite that from B to A).

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof. Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any *M*-transformation which maps point A to point B and maps point B to point A must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles). By Corollary 55.A, by taking $\mathscr{C} = \mathscr{C}_A = \mathscr{C}_B$, we have that there are only two *M*-transformations which map A to B and \mathscr{C} to itself. The proof of Corollary 55.A shows that one of the *M*-transformations preserves the orientation on \mathscr{C} and the other reverses the orientation. However, the *M*-transformation which preserves the orientation on \mathscr{C} cannot map A to B (since the orientation of \mathscr{C} from A to B is opposite that from B to A).

Theorem 55.3 (continued 1)

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof (continued). So the only possible *M*-transformation which interchanges points *A* and *B* is the one which reverses the orientation of \mathscr{C} . Let *M'* be the *M*-transformation which maps *A* to *B* and reverses the orientation of \mathscr{C} . We next show that *M'* maps *B* to *A*, completing the proof.

Let X_1 and X_2 be the points of intersection of \mathscr{C} with ω . Let the transform of B under M' be A' (we will show that A' = B, as desired). Since \mathscr{C} and ω are mapped by M' onto themselves, the set of two intersections X_1 and X_2 of \mathscr{C} and ω is mapped onto itself. Hence either X_1 is mapped to X_1 and X_2 is mapped to X_2 , or X_1 is mapped to X_2 and X_2 is mapped to X_1 . Since M' reverses the orientation of \mathscr{C} , then we cannot have M' fixing X_1 and X_2 . So we must have X_1 and X_2 interchanged by M'.

Theorem 55.3 (continued 1)

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof (continued). So the only possible *M*-transformation which interchanges points *A* and *B* is the one which reverses the orientation of \mathscr{C} . Let *M'* be the *M*-transformation which maps *A* to *B* and reverses the orientation of \mathscr{C} . We next show that *M'* maps *B* to *A*, completing the proof.

Let X_1 and X_2 be the points of intersection of \mathscr{C} with ω . Let the transform of B under M' be A' (we will show that A' = B, as desired). Since \mathscr{C} and ω are mapped by M' onto themselves, the set of two intersections X_1 and X_2 of \mathscr{C} and ω is mapped onto itself. Hence either X_1 is mapped to X_1 and X_2 is mapped to X_2 , or X_1 is mapped to X_2 and X_2 is mapped to X_1 . Since M' reverses the orientation of \mathscr{C} , then we cannot have M' fixing X_1 and X_2 . So we must have X_1 and X_2 interchanged by M'.

Theorem 55.3 (continued 2)

Theorem 55.3. There exists a unique *M*-transformation which interchanges two given points *A* and *B* of Ω .

Proof (continued). Since the cross-ratio is invariant under a Möbius transformation by Theorem 53.4, then

 $(X_1, X_2; A, B) = (M'(X_1), M'(X_2); M'(A), M'(B)) = (X_2, X_1; B, A').$

For any cross-ratio we have by Theorem 53.3 that $(X_1, X_2; A, B) = (X_2, X_1; B, A)$, so that we must have $(X_2, X_1; B, A) = (X_2, X_1; B, A')$. So, by the definition of cross-ratio, we have A = A', as desired.