Real Analysis

Chapter VI. Mappings of the Inversive Plane 55. M-Transformations-Proofs of Theorems

Table of contents

(1) Theorem 55.2
(2) Corollary 55.A
(3) Theorem 55.3

Theorem 55.2

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique M-transformation which maps X on A, and maps the direction ξ onto the direction α.

Proof. First, by Exercise 55.1 there is exactly one circle orthogonal to ω that passes through point X and has vector ξ as its direction vector at X (Pedoe describes the direction-condition in terms of tangency to the [Euclidean] straight line determined by vector ξ.) Denote this circle as \mathscr{C}_{X}, and let X_{1} and X_{2} be the points of intersection of \mathscr{C}_{X} and ω. Similarly, let \mathscr{C}_{A} be the unique circle through point A with direction α at A and orthogonal to ω. Let A_{1} and A_{2} be the points of intersection of $\mathscr{C} X$ with ω. Since Möbius transformations preserve angles of intersection by Theorem 54.3, and an M-transformation maps ω onto itself, circle orthogonal to ω are mapped onto circles orthogonal to ω.

Theorem 55.2

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique M-transformation which maps X on A, and maps the direction ξ onto the direction α.

Proof. First, by Exercise 55.1 there is exactly one circle orthogonal to ω that passes through point X and has vector ξ as its direction vector at X (Pedoe describes the direction-condition in terms of tangency to the [Euclidean] straight line determined by vector ξ.) Denote this circle as \mathscr{C}_{X}, and let X_{1} and X_{2} be the points of intersection of \mathscr{C}_{X} and ω. Similarly, let \mathscr{C}_{A} be the unique circle through point A with direction α at A and orthogonal to ω. Let A_{1} and A_{2} be the points of intersection of \mathscr{C}_{X} with ω. Since Möbius transformations preserve angles of intersection by Theorem 54.3, and an M-transformation maps ω onto itself, circle orthogonal to ω are mapped onto circles orthogonal to ω.

Theorem 55.2 (continued 1)

Proof (continued). Now any M-transformation which maps point A and vector ξ onto point A and vector α, must map \mathscr{C}_{X} onto \mathscr{C}_{A} since \mathscr{C}_{X} is mapped onto a circle through A with direction α at A and orthogonal to ω, and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_{A}.

Next label the points of intersection of \mathscr{C}_{X} and \mathscr{C}_{A} with ω, such that the direction ξ of \mathscr{C}_{X} is that of X_{1} towards X_{2} and such that the direction α of \mathscr{C}_{A} is that of A_{1} towards A_{2} (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter).

Theorem 55.2 (continued 1)

Proof (continued). Now any M-transformation which maps point A and vector ξ onto point A and vector α, must map \mathscr{C}_{X} onto \mathscr{C}_{A} since \mathscr{C}_{X} is mapped onto a circle through A with direction α at A and orthogonal to ω, and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_{A}.

Next label the points of intersection of \mathscr{C}_{X} and \mathscr{C}_{A} with ω, such that the direction ξ of \mathscr{C}_{X} is that of X_{1} towards X_{2} and such that the direction α of \mathscr{C}_{A} is that of A_{1} towards A_{2} (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter). The M-transformation must map X_{1} to A_{1}, map X_{2} to A_{2}, and map X to A (again, this follows from a parametric presentation of the circle and tangent vectors). By Theorem 53.2, three points and their images uniquely determine a Möbius transformation. We just need to show that this unique Möbius transformation is in fact an M-transformation.

Theorem 55.2 (continued 1)

Proof (continued). Now any M-transformation which maps point A and vector ξ onto point A and vector α, must map \mathscr{C}_{X} onto \mathscr{C}_{A} since \mathscr{C}_{X} is mapped onto a circle through A with direction α at A and orthogonal to ω, and there is only one such circle (by Exercise 55.1), namely \mathscr{C}_{A}.

Next label the points of intersection of \mathscr{C}_{X} and \mathscr{C}_{A} with ω, such that the direction ξ of \mathscr{C}_{X} is that of X_{1} towards X_{2} and such that the direction α of \mathscr{C}_{A} is that of A_{1} towards A_{2} (direction can be put on a line or circle by giving it parametrically; this is also how tangent vectors such as ξ and α can be determined by taking derivatives with respect to the parameter). The M-transformation must map X_{1} to A_{1}, map X_{2} to A_{2}, and map X to A (again, this follows from a parametric presentation of the circle and tangent vectors). By Theorem 53.2, three points and their images uniquely determine a Möbius transformation. We just need to show that this unique Möbius transformation is in fact an M-transformation.

Theorem 55.2 (continued 2)

Theorem 55.2. Let X and A be two points of Ω and let ξ and α be directions through X and A, respectively. Then there is a unique M-transformation which maps X on A, and maps the direction ξ onto the direction α.

Proof (continued). Now the Möbius transformation maps the circle through X_{1} and X_{2} which is orthogonal to \mathscr{C}_{X} (namely, circle ω) must be mapped to the circle through A_{1} and A_{2} which is orthogonal to \mathscr{C}_{A} (also circle ω; the preservation of orthogonality is given by Theorem 54.3). That is, ω is mapped to ω by the Möbius transformation. Since the interior point X of Ω is mapped to the interior point A of Ω, then the interior of ω is mapped to the interior of ω; that is, the unique Möbius transformation is an M-transformation, as needed.

Corollary 55.A

Corollary 55.A. Let \mathscr{C}_{A} be a circle through point A of Ω to ω, and let \mathscr{C}_{B} be a circle through a point B of Ω orthogonal to ω. Then there exist just two M-transformations which map A on B and \mathscr{C}_{A} on \mathscr{C}_{B}.

Proof. For a given direction tangent to \mathscr{C}_{A} at point A and a given tangent to \mathscr{C}_{B} at point B there is, by Theorem 55.2, a unique M-transformation mapping A to X and mapping \mathscr{C}_{A} to \mathscr{C}_{B}. Since there are two directions tangent to \mathscr{C}_{B} at B then for a given direction tangent to \mathscr{C}_{A} at A there are two such M-transformations (reversing the direction of the tangent to \mathscr{C}_{A} at A results in the same two M-transformations). Therefore, there are two such M-transformations, as claimed.

Corollary 55.A

Corollary 55.A. Let \mathscr{C}_{A} be a circle through point A of Ω to ω, and let \mathscr{C}_{B} be a circle through a point B of Ω orthogonal to ω. Then there exist just two M-transformations which map A on B and \mathscr{C}_{A} on \mathscr{C}_{B}.

Proof. For a given direction tangent to \mathscr{C}_{A} at point A and a given tangent to \mathscr{C}_{B} at point B there is, by Theorem 55.2, a unique M-transformation mapping A to X and mapping \mathscr{C}_{A} to \mathscr{C}_{B}. Since there are two directions tangent to \mathscr{C}_{B} at B then for a given direction tangent to \mathscr{C}_{A} at A there are two such M-transformations (reversing the direction of the tangent to \mathscr{C}_{A} at A results in the same two M-transformations). Therefore, there are two such M-transformations, as claimed.

Theorem 55.3

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof. Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any M-transformation which maps point A to point B and maps point B to point A must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles).

Theorem 55.3

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof. Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any M-transformation which maps point A to point B and maps point B to point A must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles). By Corollary 55.A, by taking $\mathscr{C}=\mathscr{C}_{A}=\mathscr{C}_{B}$, we have that there are only two M-transformations which map A to B and \mathscr{C} to itself. The proof of Corollary 55.A shows that one of the M-transformations preserves the orientation on \mathscr{C} and the other reverses the orientation. However, the M-transformation which preserves the orientation on \mathscr{C} cannot map A to B (since the orientation of \mathscr{C} from A to B is opposite that from B to A).

Theorem 55.3

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof. Let \mathscr{C} be the unique circle through A and B that is orthogonal to ω (as given by Theorem 55.2). Any M-transformation which maps point A to point B and maps point B to point A must map the circle \mathscr{C} to itself (since two points in Ω uniquely determine a hyperbolic line; if the points are collinear with the center of Ω then the hyperbolic line is a diameter of the unit circle, otherwise it is a segment of a circle that intersects ω at right angles). By Corollary 55.A, by taking $\mathscr{C}=\mathscr{C}_{A}=\mathscr{C}_{B}$, we have that there are only two M-transformations which map A to B and \mathscr{C} to itself. The proof of Corollary 55.A shows that one of the M-transformations preserves the orientation on \mathscr{C} and the other reverses the orientation. However, the M-transformation which preserves the orientation on \mathscr{C} cannot map A to B (since the orientation of \mathscr{C} from A to B is opposite that from B to A).

Theorem 55.3 (continued 1)

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof (continued). So the only possible M-transformation which interchanges points A and B is the one which reverses the orientation of \mathscr{C}. Let M^{\prime} be the M-transformation which maps A to B and reverses the orientation of \mathscr{C}. We next show that M^{\prime} maps B to A, completing the proof.

Let X_{1} and X_{2} be the points of intersection of \mathscr{C} with ω. Let the transform of B under M^{\prime} be A^{\prime} (we will show that $A^{\prime}=B$, as desired). Since \mathscr{C} and ω are mapped by M^{\prime} onto themselves, the set of two intersections X_{1} and X_{2} of \mathscr{C} and ω is mapped onto itself. Hence either X_{1} is mapped to X_{1} and X_{2} is mapped to X_{2}, or X_{1} is mapped to X_{2} and X_{2} is mapped to X_{1} Since M^{\prime} reverses the orientation of \mathscr{C}, then we cannot have M^{\prime} fixing X_{1} and X_{2}. So we must have X_{1} and X_{2} interchanged by M^{\prime}

Theorem 55.3 (continued 1)

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof (continued). So the only possible M-transformation which interchanges points A and B is the one which reverses the orientation of \mathscr{C}. Let M^{\prime} be the M-transformation which maps A to B and reverses the orientation of \mathscr{C}. We next show that M^{\prime} maps B to A, completing the proof.

Let X_{1} and X_{2} be the points of intersection of \mathscr{C} with ω. Let the transform of B under M^{\prime} be A^{\prime} (we will show that $A^{\prime}=B$, as desired). Since \mathscr{C} and ω are mapped by M^{\prime} onto themselves, the set of two intersections X_{1} and X_{2} of \mathscr{C} and ω is mapped onto itself. Hence either X_{1} is mapped to X_{1} and X_{2} is mapped to X_{2}, or X_{1} is mapped to X_{2} and X_{2} is mapped to X_{1}. Since M^{\prime} reverses the orientation of \mathscr{C}, then we cannot have M^{\prime} fixing X_{1} and X_{2}. So we must have X_{1} and X_{2} interchanged by M^{\prime}.

Theorem 55.3 (continued 2)

Theorem 55.3. There exists a unique M-transformation which interchanges two given points A and B of Ω.

Proof (continued). Since the cross-ratio is invariant under a Möbius transformation by Theorem 53.4, then

$$
\left(X_{1}, X_{2} ; A, B\right)=\left(M^{\prime}\left(X_{1}\right), M^{\prime}\left(X_{2}\right) ; M^{\prime}(A), M^{\prime}(B)\right)=\left(X_{2}, X_{1} ; B, A^{\prime}\right)
$$

For any cross-ratio we have by Theorem 53.3 that $\left(X_{1}, X_{2} ; A, B\right)=\left(X_{2}, X_{1} ; B, A\right)$, so that we must have $\left(X_{2}, X_{1} ; B, A\right)=\left(X_{2}, X_{1} ; B, A^{\prime}\right)$. So, by the definition of cross-ratio, we have $A=A^{\prime}$, as desired.

