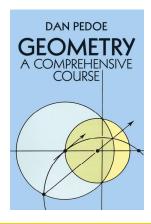
Real Analysis

Chapter VI. Mappings of the Inversive Plane

57. Hyperbolic Triangles and Parallels—Proofs of Theorems



Real Analysis December 20, 2021

Theorem 57.1

Theorem 57.1.I (continued)

Theorem 57.1.I. The **SAS** Theorem. Given two *p*-triangles ABC and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $ACAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $ABC \stackrel{p}{=} A'B'C'$, $ACB \stackrel{p}{=} A'C'B'$ and $ACB \stackrel{p}{=} A'C'$.

Proof (continued). By hypothesis $AC \stackrel{p}{=} A'C'$, so there is an M-transformation M_2 which maps A to A' and maps C to C', and by Exercise 56.2 this M-transformation is unique. So M_1 and M_2 both map A to A' and both map the direction of p-line AC to the direction of p-line A'C', and hence by Theorem 55.2 we must have $M_1 = M_2$. But M_1 maps B to B', so that M_2 does as well. Since M_2 maps C to C' also, then $BC \stackrel{p}{=} B'C'$, as claimed. By Theorem 54.3, angles ABC and A'B'C' are equal and angles ACB and A'C'B' are equal; that is, $ABC \stackrel{p}{=} A'B'C'$ and $ACB \stackrel{p}{=} A'C'B'$, as claimed.

Real Analysis

December 20, 2021 4 / 4

Theorem 57.1.L

Theorem 57.1.I

Theorem 57.1.I. The **SAS** Theorem. Given two *p*-triangles ABC and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $A'BC \stackrel{p}{=} A'B'$ imply the *p*-congruence of the triangles, so that $ABC \stackrel{p}{=} A'B'C'$, $ACB \stackrel{p}{=} A'C'B'$ and $ACB \stackrel{p}{=} A'C'B'$.

Proof. We just need to give an M-transformation which maps A to A', B to B', and C to C'. Since $AB \stackrel{p}{=} A'B'$ by hypothesis, then there is an M-transformation which maps A to A' and maps B to B' (by the definition of congruent segments); denote it as M_1 . By Exercise 56.2, this M-transformation M_1 is unique; we now consider the effect of M_1 on p-line AC. Since M-transformations preserve both the measure and sense of angles by Theorem 54.3, then the direction of the image under M_1 of the p-line AC at point A' is the same as the direction of the p-line A' C'. There is only one p-line through A' in the direction of the p-line A' C'.

() Real Analysis December 20, 2021 3 / 4