Real Analysis

Chapter VI. Mappings of the Inversive Plane

 57. Hyperbolic Triangles and Parallels—Proofs of Theorems

Table of contents

(1) Theorem 57.1.I

Theorem 57.1.I

Theorem 57.1.I. The SAS Theorem. Given two p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with equal orientation, the congruences $A B \stackrel{p}{=} A^{\prime} B^{\prime}, A C \stackrel{p}{=} A^{\prime} C^{\prime}$, and $\Varangle C A B \stackrel{p}{=} C^{\prime} A^{\prime} B^{\prime}$ imply the p-congruence of the triangles, so that $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}, \Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$ and $B C \stackrel{p}{=} B^{\prime} C^{\prime}$.

Proof. We just need to give an M-transformation which maps A to A^{\prime}, B to B^{\prime}, and C to C^{\prime}. Since $A B \stackrel{p}{=} A^{\prime} B^{\prime}$ by hypothesis, then there is an M-transformation which maps A to A^{\prime} and maps B to B^{\prime} (by the definition of congruent segments); denote it as M_{1}. By Exercise 56.2, this M-transformation M_{1} is unique; we now consider the effect of M_{1} on p-line $A C$.

Theorem 57.1.I

Theorem 57.1.I. The SAS Theorem. Given two p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with equal orientation, the congruences $A B \stackrel{p}{=} A^{\prime} B^{\prime}, A C \stackrel{p}{=} A^{\prime} C^{\prime}$, and $\Varangle C A B \stackrel{p}{=} C^{\prime} A^{\prime} B^{\prime}$ imply the p-congruence of the triangles, so that $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}, \Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$ and $B C \stackrel{p}{=} B^{\prime} C^{\prime}$.

Proof. We just need to give an M-transformation which maps A to A^{\prime}, B to B^{\prime}, and C to C^{\prime}. Since $A B \stackrel{p}{=} A^{\prime} B^{\prime}$ by hypothesis, then there is an M-transformation which maps A to A^{\prime} and maps B to B^{\prime} (by the definition of congruent segments); denote it as M_{1}. By Exercise 56.2, this M-transformation M_{1} is unique; we now consider the effect of M_{1} on p-line $A C$. Since M-transformations preserve both the measure and sense of angles by Theorem 54.3, then the direction of the image under M_{1} of the p-line $A C$ at point A^{\prime} is the same as the direction of the p-line $A^{\prime} C^{\prime}$. There is only one p-line through A^{\prime} in the direction of the p-line $A^{\prime} C^{\prime}$

Theorem 57.1.I

Theorem 57.1.I. The SAS Theorem. Given two p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with equal orientation, the congruences $A B \stackrel{p}{=} A^{\prime} B^{\prime}, A C \stackrel{p}{=} A^{\prime} C^{\prime}$, and $\Varangle C A B \stackrel{p}{=} C^{\prime} A^{\prime} B^{\prime}$ imply the p-congruence of the triangles, so that $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}, \Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$ and $B C \stackrel{p}{=} B^{\prime} C^{\prime}$.

Proof. We just need to give an M-transformation which maps A to A^{\prime}, B to B^{\prime}, and C to C^{\prime}. Since $A B \stackrel{p}{=} A^{\prime} B^{\prime}$ by hypothesis, then there is an M-transformation which maps A to A^{\prime} and maps B to B^{\prime} (by the definition of congruent segments); denote it as M_{1}. By Exercise 56.2, this M-transformation M_{1} is unique; we now consider the effect of M_{1} on p-line $A C$. Since M-transformations preserve both the measure and sense of angles by Theorem 54.3, then the direction of the image under M_{1} of the p-line $A C$ at point A^{\prime} is the same as the direction of the p-line $A^{\prime} C^{\prime}$. There is only one p-line through A^{\prime} in the direction of the p-line $A^{\prime} C^{\prime}$.

Theorem 57.1.I (continued)

Theorem 57.1.I. The SAS Theorem. Given two p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with equal orientation, the congruences $A B \stackrel{p}{=} A^{\prime} B^{\prime}, A C \stackrel{p}{=} A^{\prime} C^{\prime}$, and $\Varangle C A B \stackrel{p}{=} C^{\prime} A^{\prime} B^{\prime}$ imply the p-congruence of the triangles, so that $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}, \Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$ and $B C \stackrel{p}{=} B^{\prime} C^{\prime}$.

Proof (continued). By hypothesis $A C \stackrel{p}{=} A^{\prime} C^{\prime}$, so there is an M-transformation M_{2} which maps A to A^{\prime} and maps C to C^{\prime}, and by Exercise 56.2 this M-transformation is unique. So M_{1} and M_{2} both map A to A^{\prime} and both map the direction of p-line $A C$ to the direction of p-line $A^{\prime} C^{\prime}$, and hence by Theorem 55.2 we must have $M_{1}=M_{2}$. But M_{1} maps
 $B C \stackrel{p}{=} B^{\prime} C^{\prime}$, as claimed. By Theorem 54.3, angles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equal and angles $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$ are equal; that is, $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}$ and $\Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$, as claimed.

Theorem 57.1.I (continued)

Theorem 57.1.I. The SAS Theorem. Given two p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with equal orientation, the congruences $A B \stackrel{p}{=} A^{\prime} B^{\prime}, A C \stackrel{p}{=} A^{\prime} C^{\prime}$, and $\Varangle C A B \stackrel{p}{=} C^{\prime} A^{\prime} B^{\prime}$ imply the p-congruence of the triangles, so that $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}, \Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$ and $B C \stackrel{p}{=} B^{\prime} C^{\prime}$.

Proof (continued). By hypothesis $A C \stackrel{p}{=} A^{\prime} C^{\prime}$, so there is an M-transformation M_{2} which maps A to A^{\prime} and maps C to C^{\prime}, and by Exercise 56.2 this M-transformation is unique. So M_{1} and M_{2} both map A to A^{\prime} and both map the direction of p-line $A C$ to the direction of p-line $A^{\prime} C^{\prime}$, and hence by Theorem 55.2 we must have $M_{1}=M_{2}$. But M_{1} maps B to B^{\prime}, so that M_{2} does as well. Since M_{2} maps C to C^{\prime} also, then $B C \stackrel{p}{=} B^{\prime} C^{\prime}$, as claimed. By Theorem 54.3, angles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are equal and angles $A C B$ and $A^{\prime} C^{\prime} B^{\prime}$ are equal; that is, $\Varangle A B C \stackrel{p}{=} \Varangle A^{\prime} B^{\prime} C^{\prime}$ and $\Varangle A C B \stackrel{p}{=} \Varangle A^{\prime} C^{\prime} B^{\prime}$, as claimed.

