Real Analysis

Chapter VI. Mappings of the Inversive Plane 57. Hyperbolic Triangles and Parallels—Proofs of Theorems

Real Analysis

Table of contents

Theorem 57.1.1

Theorem 57.1.I. The SAS Theorem. Given two *p*-triangles *ABC* and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $3CAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $3ABC \stackrel{p}{=} 3A'B'C'$, $3ACB \stackrel{p}{=} 3A'C'B'$ and $BC \stackrel{p}{=} B'C'$.

Proof. We just need to give an *M*-transformation which maps *A* to *A'*, *B* to *B'*, and *C* to *C'*. Since $AB \stackrel{p}{=} A'B'$ by hypothesis, then there is an *M*-transformation which maps *A* to *A'* and maps *B* to *B'* (by the definition of congruent segments); denote it as M_1 . By Exercise 56.2, this *M*-transformation M_1 is unique; we now consider the effect of M_1 on *p*-line *AC*.

Theorem 57.1.1

Theorem 57.1.I. The SAS Theorem. Given two *p*-triangles *ABC* and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $3CAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $3ABC \stackrel{p}{=} 3A'B'C'$, $3ACB \stackrel{p}{=} 3A'C'B'$ and $BC \stackrel{p}{=} B'C'$.

Proof. We just need to give an *M*-transformation which maps *A* to *A'*, *B* to *B'*, and *C* to *C'*. Since $AB \stackrel{p}{=} A'B'$ by hypothesis, then there is an *M*-transformation which maps *A* to *A'* and maps *B* to *B'* (by the definition of congruent segments); denote it as M_1 . By Exercise 56.2, this *M*-transformation M_1 is unique; we now consider the effect of M_1 on *p*-line *AC*. Since *M*-transformations preserve both the measure and sense of angles by Theorem 54.3, then the direction of the image under M_1 of the *p*-line *AC* at point *A'* is the same as the direction of the *p*-line *A'C'*. There is only one *p*-line through *A'* in the direction of the *p*-line *A'C'*.

Theorem 57.1.1

Theorem 57.1.I. The SAS Theorem. Given two *p*-triangles *ABC* and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $3CAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $3ABC \stackrel{p}{=} 3A'B'C'$, $3ACB \stackrel{p}{=} 3A'C'B'$ and $BC \stackrel{p}{=} B'C'$.

Proof. We just need to give an *M*-transformation which maps *A* to *A'*, *B* to *B'*, and *C* to *C'*. Since $AB \stackrel{p}{=} A'B'$ by hypothesis, then there is an *M*-transformation which maps *A* to *A'* and maps *B* to *B'* (by the definition of congruent segments); denote it as M_1 . By Exercise 56.2, this *M*-transformation M_1 is unique; we now consider the effect of M_1 on *p*-line *AC*. Since *M*-transformations preserve both the measure and sense of angles by Theorem 54.3, then the direction of the *p*-line *A'C'*. There is only one *p*-line through *A'* in the direction of the *p*-line *A'C'*.

Theorem 57.1.1 (continued)

Theorem 57.1.I. The SAS Theorem. Given two *p*-triangles *ABC* and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $\stackrel{\downarrow}{\Rightarrow} CAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $\stackrel{\downarrow}{\Rightarrow} ABC \stackrel{p}{=} \stackrel{\downarrow}{\Rightarrow} A'B'C'$, $\stackrel{\downarrow}{\Rightarrow} ACB \stackrel{p}{=} \stackrel{\downarrow}{\Rightarrow} A'C'B'$ and $BC \stackrel{p}{=} B'C'$.

Proof (continued). By hypothesis $AC \stackrel{P}{=} A'C'$, so there is an *M*-transformation M_2 which maps *A* to *A'* and maps *C* to *C'*, and by Exercise 56.2 this *M*-transformation is unique. So M_1 and M_2 both map *A* to *A'* and both map the direction of *p*-line *AC* to the direction of *p*-line A'C', and hence by Theorem 55.2 we must have $M_1 = M_2$. But M_1 maps *B* to *B'*, so that M_2 does as well. Since M_2 maps *C* to *C'* also, then $BC \stackrel{P}{=} B'C'$, as claimed. By Theorem 54.3, angles *ABC* and *A'B'C'* are equal and angles *ACB* and *A'C'B'* are equal; that is, $ABC \stackrel{P}{=} A'B'C'$ and $ACB \stackrel{P}{=} A'C'B'$, as claimed.

Theorem 57.1.1 (continued)

Theorem 57.1.1. The SAS Theorem. Given two *p*-triangles *ABC* and A'B'C' with equal orientation, the congruences $AB \stackrel{p}{=} A'B'$, $AC \stackrel{p}{=} A'C'$, and $3CAB \stackrel{p}{=} C'A'B'$ imply the *p*-congruence of the triangles, so that $3ABC \stackrel{p}{=} 3A'B'C'$, $3ACB \stackrel{p}{=} 3A'C'B'$ and $BC \stackrel{p}{=} B'C'$.

Proof (continued). By hypothesis $AC \stackrel{p}{=} A'C'$, so there is an *M*-transformation M_2 which maps *A* to *A'* and maps *C* to *C'*, and by Exercise 56.2 this *M*-transformation is unique. So M_1 and M_2 both map *A* to *A'* and both map the direction of *p*-line *AC* to the direction of *p*-line A'C', and hence by Theorem 55.2 we must have $M_1 = M_2$. But M_1 maps *B* to *B'*, so that M_2 does as well. Since M_2 maps *C* to *C'* also, then $BC \stackrel{p}{=} B'C'$, as claimed. By Theorem 54.3, angles *ABC* and *A'B'C'* are equal and angles *ACB* and *A'C'B'* are equal; that is, $ABC \stackrel{p}{=} A'B'C'$ and $ACB \stackrel{p}{=} A'C'B'$, as claimed.