Real Analysis

Chapter VI. Mappings of the Inversive Plane

 58. More Hyperbolic Triangles and Distance-Proofs of Theorems

Table of contents

(1) Theorem 58.1
(2) Theorem 58.2
(3) Theorem 58.A
4) Theorem 58.2.I
(5) Theorem 58.B
(6) Theorem 58.C
(7) Theorem 58.2.II
(8) Theorem 58.2.III
(9) Theorem 58.2.IV

Theorem 58.1

Theorem 58.1. The sum of the angles of a p-triangle $A B C$ is (strictly) less than π.

```
Proof. Let C be the center of }\omega\mathrm{ (see Figure
58.1). The the p-lines CA and CB are diameters
of }\omega\mathrm{ and the p-line AB is an arc of a circle
which is orthogonal to }\omega\mathrm{ . If two circles are
orthogonal, then their centers do not both lie
inside one of the circles (we accept this based
on our geometric intuition). So the center
of the p-line AB lies outside }\omega\mathrm{ , and the center
C of circle }\omega\mathrm{ lies outside the circle which
determines the p-line AB.
```


Theorem 58.1

Theorem 58.1. The sum of the angles of a p-triangle $A B C$ is (strictly) less than π.

Proof. Let C be the center of ω (see Figure 58.1). The the p-lines $C A$ and $C B$ are diameters of ω and the p-line $A B$ is an arc of a circle which is orthogonal to ω. If two circles are orthogonal, then their centers do not both lie inside one of the circles (we accept this based on our geometric intuition). So the center of the p-line $A B$ lies outside ω, and the center C of circle ω lies outside the circle which
 determines the p-line $A B$. Hence the p-line $A B$ is convex to C, as shown in Figure 58.1. This implies the angles of the curvilinear triangle $A B C$ at A and at B are less than the angles of the Euclidean triangle $A B C$ at A and at B. Since the angle-sum of the Euclidean triangle $A B C$ is equal to π, the angle-sum of the p-triangle $A B C$ is less than π.

Theorem 58.1

Theorem 58.1. The sum of the angles of a p-triangle $A B C$ is (strictly) less than π.

Proof. Let C be the center of ω (see Figure 58.1). The the p-lines $C A$ and $C B$ are diameters of ω and the p-line $A B$ is an arc of a circle which is orthogonal to ω. If two circles are orthogonal, then their centers do not both lie inside one of the circles (we accept this based on our geometric intuition). So the center of the p-line $A B$ lies outside ω, and the center C of circle ω lies outside the circle which
 determines the p-line $A B$. Hence the p-line $A B$ is convex to C, as shown in Figure 58.1. This implies the angles of the curvilinear triangle $A B C$ at A and at B are less than the angles of the Euclidean triangle $A B C$ at A and at B. Since the angle-sum of the Euclidean triangle $A B C$ is equal to π, the angle-sum of the p-triangle $A B C$ is less than π.

Theorem 58.1 (continued)

Proof (continued). Now suppose no vertex of the p-triangle $A B C$ is the center of ω. Let V be the other point of intersection of the circles which determine the p-lines $A C$ and $B C$. Then V and C are inverse points in ω (see "Section 20. Inversion"). Let \mathscr{C} be the circle which has V as its center and which is orthogonal to ω. Inverting in \mathscr{C} maps ω to itself and maps circles through V to lines. Since C is the intersection of two circles orthogonal to ω then
 C inverts to the center of ω, and the circles through V invert into diameters of ω. So the p-triangle $A B C$ inverts onto p-triangle $A^{\prime} B^{\prime} C^{\prime}$, where C^{\prime} is the center of ω. As shown above, this implies that the angle-sum of $A^{\prime} B^{\prime} C^{\prime}$ is less than π. Since inversion preserves the measure of angles (but not the sense) then the angle sum of $A B C$ is less than π, as claimed.

Theorem 58.1 (continued)

Proof (continued). Now suppose no vertex of the p-triangle $A B C$ is the center of ω. Let V be the other point of intersection of the circles which determine the p-lines $A C$ and $B C$. Then V and C are inverse points in ω (see "Section 20. Inversion"). Let \mathscr{C} be the circle which has V as its center and which is orthogonal to ω. Inverting in \mathscr{C} maps ω to itself and maps circles through V to lines. Since C is the intersection of two circles orthogonal to ω then

C inverts to the center of ω, and the circles through V invert into diameters of ω. So the p-triangle $A B C$ inverts onto p-triangle $A^{\prime} B^{\prime} C^{\prime}$, where C^{\prime} is the center of ω. As shown above, this implies that the angle-sum of $A^{\prime} B^{\prime} C^{\prime}$ is less than π. Since inversion preserves the measure of angles (but not the sense) then the angle sum of $A B C$ is less than π, as claimed.

Theorem 58.2

Theorem 58.2. In any p-triangle, if one of the p-sides be extended, the exterior angle is greater than either of the interior and opposite angles.

Proof. The proof is similar to the second part
of Theorem 58.1. Consider the p-line $C B$
extended to produce the exterior angle at B
of p-triangle $A B C$. With C^{\prime} as the center
of ω, inversion with respect to the circle
\mathscr{C} introduced in the proof of Theorem 58.1.
inversion with respect to \mathscr{C} maps C to C^{\prime}.

Theorem 58.2

Theorem 58.2. In any p-triangle, if one of the p-sides be extended, the exterior angle is greater than either of the interior and opposite angles.

Proof. The proof is similar to the second part of Theorem 58.1. Consider the p-line $C B$ extended to produce the exterior angle at B of p-triangle $A B C$. With C^{\prime} as the center of ω, inversion with respect to the circle \mathscr{C} introduced in the proof of Theorem 58.1, inversion with respect to \mathscr{C} maps C to C^{\prime}.
The p-line $B^{\prime} A^{\prime}$ is convex to point C^{\prime}, so the exterior angle at B^{\prime} of p-triangle $A^{\prime} B^{\prime} C^{\prime}$ is greater than the same angle for the

Figure 58.1 (revised) Euclidean triangle $A^{\prime} B^{\prime} C^{\prime}$, and the interior angle at A^{\prime} of p-triangle $A^{\prime} B^{\prime} C^{\prime}$ is less than the same angle for the Euclidean triangle $A^{\prime} B^{\prime} C^{\prime}$.

Theorem 58.2

Theorem 58.2. In any p-triangle, if one of the p-sides be extended, the exterior angle is greater than either of the interior and opposite angles.

Proof. The proof is similar to the second part of Theorem 58.1. Consider the p-line $C B$ extended to produce the exterior angle at B of p-triangle $A B C$. With C^{\prime} as the center of ω, inversion with respect to the circle \mathscr{C} introduced in the proof of Theorem 58.1, inversion with respect to \mathscr{C} maps C to C^{\prime}. The p-line $B^{\prime} A^{\prime}$ is convex to point C^{\prime}, so the exterior angle at B^{\prime} of p-triangle $A^{\prime} B^{\prime} C^{\prime}$ is greater than the same angle for the

Figure 58.1 (revised) Euclidean triangle $A^{\prime} B^{\prime} C^{\prime}$, and the interior angle at A^{\prime} of p-triangle $A^{\prime} B^{\prime} C^{\prime}$ is less than the same angle for the Euclidean triangle $A^{\prime} B^{\prime} C^{\prime}$.

Theorem 58.2 (continued)

Theorem 58.2. In any p-triangle, if one of the p-sides be extended, the exterior angle is greater than either of the interior and opposite angles.

Proof (continued). By Euclid's Book I Proposition 32, the exterior angle at B^{\prime} for the Euclidean triangle $A^{\prime} B^{\prime} C^{\prime}$ is greater than the angle interior angle at A^{\prime}. So in the p-triangle $A^{\prime} B^{\prime} C^{\prime}$, the exterior angle at B^{\prime} is "even more" greater than the interior angle at A^{\prime}. Since the angles of p-triangle $A B C$ are unchanged in measure by an inversion (though not in sense), then the exterior angle at B of p-triangle $A B C$ exceeds interior angle A, as claimed.

Theorem 58.A

Theorem 58. A . If the points $\alpha, A, \mathrm{~B}, \beta$ are in this order on a p-line, where α and β are on ω, then the cross-ratio $(\alpha, \beta ; A, B)$ is a positive real number less than 1.

Proof. There is a unique Möbius transformation which maps points α, , and β onto three given points $\alpha^{\prime}, A^{\prime}$, and β^{\prime} of the real line (where we choose A^{\prime} to lie between α^{\prime} and β^{\prime}) by Theorem 53.2. For any pair of points A, B on the p-line whose terminal points on ω are α and β, the points A^{\prime}, B^{\prime} will like on the segment of the real line with endpoints $\alpha^{\prime} \beta^{\prime}$.

Theorem 58.A

Theorem 58. A . If the points $\alpha, A, \mathrm{~B}, \beta$ are in this order on a p-line, where α and β are on ω, then the cross-ratio $(\alpha, \beta ; A, B)$ is a positive real number less than 1.

Proof. There is a unique Möbius transformation which maps points α, A, and β onto three given points $\alpha^{\prime}, A^{\prime}$, and β^{\prime} of the real line (where we choose A^{\prime} to lie between α^{\prime} and β^{\prime}) by Theorem 53.2. For any pair of points A, B on the p-line whose terminal points on ω are α and β, the points A^{\prime}, B^{\prime} will like on the segment of the real line with endpoints $\alpha^{\prime} \beta^{\prime}$. Since a Möbius transformation preserves cross-ratios (Theorem 53.4) then $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$, which is real by Theorem 53.5. Now the order α, A, B, β on the p-line is the same as the order $\alpha^{\prime}, A^{\prime}, B^{\prime}, \beta^{\prime}$ on the real line. The cross-ratio (by definition) is

Theorem 58.A

Theorem 58.A. If the points α, A, B, β are in this order on a p-line, where α and β are on ω, then the cross-ratio $(\alpha, \beta ; A, B)$ is a positive real number less than 1.

Proof. There is a unique Möbius transformation which maps points α, A, and β onto three given points $\alpha^{\prime}, A^{\prime}$, and β^{\prime} of the real line (where we choose A^{\prime} to lie between α^{\prime} and β^{\prime}) by Theorem 53.2. For any pair of points A, B on the p-line whose terminal points on ω are α and β, the points A^{\prime}, B^{\prime} will like on the segment of the real line with endpoints $\alpha^{\prime} \beta^{\prime}$. Since a Möbius transformation preserves cross-ratios (Theorem 53.4) then $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$, which is real by Theorem 53.5. Now the order α, A, B, β on the p-line is the same as the order $\alpha^{\prime}, A^{\prime}, B^{\prime}, \beta^{\prime}$ on the real line. The cross-ratio (by definition) is

$$
\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)=\left(\frac{\alpha^{\prime}-A^{\prime}}{\beta^{\prime}-A^{\prime}}\right) /\left(\frac{\alpha^{\prime}-B^{\prime}}{\beta^{\prime}-B^{\prime}}\right)=\left(\frac{\alpha^{\prime}-A^{\prime}}{A^{\prime}-\beta^{\prime}}\right) /\left(\frac{\alpha^{\prime}-B^{\prime}}{B^{\prime}-\beta^{\prime}}\right) .
$$

Theorem 58.A (continued)

Proof (continued). ...

$$
\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)=\left(\frac{\alpha^{\prime}-A^{\prime}}{A^{\prime}-\beta^{\prime}}\right) /\left(\frac{\alpha^{\prime}-B^{\prime}}{B^{\prime}-\beta^{\prime}}\right) .
$$

Since A^{\prime} is between α^{\prime} and β^{\prime} on the real line, then $\left(\alpha^{\prime}-A^{\prime}\right) /\left(A^{\prime}-\beta^{\prime}\right)$ is positive. Similarly, since B^{\prime} is between A^{\prime} and β^{\prime} on the real line, then $\left(\alpha^{\prime}-B^{\prime}\right) /\left(B^{\prime}-\beta^{\prime}\right)$ is positive and so the cross-ratio is positive. In addition, since B^{\prime} is between A^{\prime} and β^{\prime} on the real line, then A^{\prime} is closer to α^{\prime} than B^{\prime} is; that is, $\left|\alpha^{\prime}-A^{\prime}\right|<\left|\alpha^{\prime}-B^{\prime}\right|$. Also B^{\prime} is closer to β^{\prime} than A^{\prime} is; that is $\left|B^{\prime}-\beta^{\prime}\right|<\left|A^{\prime}-\beta^{\prime}\right|$ or $\left|A^{\prime}-\beta^{\prime}\right|>\left|B^{\prime}-\beta^{\prime}\right|$. Therefore,

and the cross-ratio $\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$ is less than 1 . So $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$ is less than 1 , as claimed.

Theorem 58.A (continued)

Proof (continued). ...

$$
\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)=\left(\frac{\alpha^{\prime}-A^{\prime}}{A^{\prime}-\beta^{\prime}}\right) /\left(\frac{\alpha^{\prime}-B^{\prime}}{B^{\prime}-\beta^{\prime}}\right) .
$$

Since A^{\prime} is between α^{\prime} and β^{\prime} on the real line, then $\left(\alpha^{\prime}-A^{\prime}\right) /\left(A^{\prime}-\beta^{\prime}\right)$ is positive. Similarly, since B^{\prime} is between A^{\prime} and β^{\prime} on the real line, then $\left(\alpha^{\prime}-B^{\prime}\right) /\left(B^{\prime}-\beta^{\prime}\right)$ is positive and so the cross-ratio is positive. In addition, since B^{\prime} is between A^{\prime} and β^{\prime} on the real line, then A^{\prime} is closer to α^{\prime} than B^{\prime} is; that is, $\left|\alpha^{\prime}-A^{\prime}\right|<\left|\alpha^{\prime}-B^{\prime}\right|$. Also B^{\prime} is closer to β^{\prime} than A^{\prime} is; that is $\left|B^{\prime}-\beta^{\prime}\right|<\left|A^{\prime}-\beta^{\prime}\right|$ or $\left|A^{\prime}-\beta^{\prime}\right|>\left|B^{\prime}-\beta^{\prime}\right|$. Therefore,

$$
\left(\frac{\alpha^{\prime}-A^{\prime}}{A^{\prime}-\beta^{\prime}}\right)=\left|\frac{\alpha^{\prime}-A^{\prime}}{A^{\prime}-\beta^{\prime}}\right|<\left|\frac{\alpha^{\prime}-B^{\prime}}{B^{\prime}-\beta^{\prime}}\right|=\left(\frac{\alpha^{\prime}-B^{\prime}}{B^{\prime}-\beta^{\prime}}\right),
$$

and the cross-ratio $\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$ is less than 1 . So $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$ is less than 1 , as claimed.

Theorem 58.2.I

Theorem 58.2.I. If A, B, and C are p-points, in this order, on a p-line then $d(A, C)=d(A, B)+d(B, C)$.

Proof. Suppose that α, A, B, C, β lie, in this order, on a p-line, where α and β are the intersections of the p-line with ω. Then the cross-ratios $(\alpha, \beta ; A, B),(\alpha, \beta ; B, C)$, and $(\alpha, \beta ; A, C)$ are positive real numbers less than 1 by Theorem 58.A.

Theorem 58.2.I

Theorem 58.2.I. If A, B, and C are p-points, in this order, on a p-line then $d(A, C)=d(A, B)+d(B, C)$.

Proof. Suppose that α, A, B, C, β lie, in this order, on a p-line, where α and β are the intersections of the p-line with ω. Then the cross-ratios $(\alpha, \beta ; A, B),(\alpha, \beta ; B, C)$, and $(\alpha, \beta ; A, C)$ are positive real numbers less than 1 by Theorem 58.A. By Exercise 53.5, we have

$$
(\alpha, \beta ; A, C)=(\alpha, \beta ; A, B)(\alpha, \beta ; B, C),
$$

$$
\text { or } \log (\alpha, \beta ; A, C)=\log (\alpha, \beta ; A, B)+\log (\alpha, \beta ; B, C) \text {, }
$$

and each of these three logarithms are negative numbers, as shown in the proof of Theorem 58.A so that

$$
|\log (\alpha, \beta ; A, C)|=|\log (\alpha, \beta ; A, B)|+|\log (\alpha, \beta ; B, C)| .
$$

Therefore, $d(A, C)=d(A, B)+d(B, C)$, as claimed.

Theorem 58.2.I

Theorem 58.2.I. If A, B, and C are p-points, in this order, on a p-line then $d(A, C)=d(A, B)+d(B, C)$.

Proof. Suppose that α, A, B, C, β lie, in this order, on a p-line, where α and β are the intersections of the p-line with ω. Then the cross-ratios $(\alpha, \beta ; A, B),(\alpha, \beta ; B, C)$, and $(\alpha, \beta ; A, C)$ are positive real numbers less than 1 by Theorem 58.A. By Exercise 53.5, we have

$$
\begin{aligned}
(\alpha, \beta ; A, C) & =(\alpha, \beta ; A, B)(\alpha, \beta ; B, C) \\
\text { or } \log (\alpha, \beta ; A, C) & =\log (\alpha, \beta ; A, B)+\log (\alpha, \beta ; B, C)
\end{aligned}
$$

and each of these three logarithms are negative numbers, as shown in the proof of Theorem 58.A so that

$$
|\log (\alpha, \beta ; A, C)|=|\log (\alpha, \beta ; A, B)|+|\log (\alpha, \beta ; B, C)| .
$$

Therefore, $d(A, C)=d(A, B)+d(B, C)$, as claimed.

Theorem 58.B

Theorem 58.B. The distance function d is invariant under M^{*}-transformations. That is, for $A, B \in \Omega$ and M and M^{*}-transformation, $d(A, B)=d(M(A), M(B))$.

Proof. By Theorem 53.4, an $M_{+-t r a n s f o r m a t i o n ~ l e a v e s ~ c r o s s-r a t i o s ~}^{\text {s }}$ unchanged, and by Exercise 57.7 an M_{-}-transformation maps a cross-ratio to its conjugate complex value. Let $A, B \in \Omega$ and let α, β be the points of intersection of the p-line $A B$ with ω. So α, β, A, B lie on the same p-line so that the cross-ratio $(\alpha, \beta ; A, B)$ is real by Theorem 53.5.

Theorem 58.B

Theorem 58.B. The distance function d is invariant under M^{*}-transformations. That is, for $A, B \in \Omega$ and M and M^{*}-transformation, $d(A, B)=d(M(A), M(B))$.

Proof. By Theorem 53.4, an M_{+}-transformation leaves cross-ratios unchanged, and by Exercise 57.7 an M_{-}-transformation maps a cross-ratio to its conjugate complex value. Let $A, B \in \Omega$ and let α, β be the points of intersection of the p-line $A B$ with ω. So α, β, A, B lie on the same p-line so that the cross-ratio $(\alpha, \beta ; A, B)$ is real by Theorem 53.5. So both an M_{+}-transformation and an M_{-}-transformation leave ($\alpha, \beta ; A, B$) invariant and hence map this p-line to another p-line. Now an M^{*}-transformation maps ω to itself so the images of α and β under such a transformation are also on ω. So with the images of α, β, A, B as $\alpha^{\prime}, \beta^{\prime}, A^{\prime}, B^{\prime}$ we have $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$, or $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, as claimed.

Theorem 58.B

Theorem 58.B. The distance function d is invariant under M^{*}-transformations. That is, for $A, B \in \Omega$ and M and M^{*}-transformation, $d(A, B)=d(M(A), M(B))$.

Proof. By Theorem 53.4, an M_{+}-transformation leaves cross-ratios unchanged, and by Exercise 57.7 an M_{-}-transformation maps a cross-ratio to its conjugate complex value. Let $A, B \in \Omega$ and let α, β be the points of intersection of the p-line $A B$ with ω. So α, β, A, B lie on the same p-line so that the cross-ratio $(\alpha, \beta ; A, B)$ is real by Theorem 53.5. So both an M_{+}-transformation and an M_{-}-transformation leave $(\alpha, \beta ; A, B)$ invariant and hence map this p-line to another p-line. Now an M^{*}-transformation maps ω to itself so the images of α and β under such a transformation are also on ω. So with the images of α, β, A, B as $\alpha^{\prime}, \beta^{\prime}, A^{\prime}, B^{\prime}$ we have $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$, or $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, as claimed.

Theorem 58.C

Theorem 58.C. If for points $A, B \in \Omega$ we have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, then there is an M_{+}-transformation which maps A to A^{\prime} and maps B to B^{\prime}.

Proof. Let $A, B \in \Omega$ so that $A B$ is the p-line containing A and B, and let this p-line intersect ω at α and β where the order of the points on the p-line are α, A, B, β. Similarly, let $A^{\prime}, B^{\prime} \in \Omega$ so that $A^{\prime} B^{\prime}$ is the p-line containing A^{\prime} and B^{\prime}, and let this p-line intersect ω at α^{\prime} and β^{\prime} where the order of the points on the p-line are $\alpha^{\prime}, A^{\prime}, B^{\prime}, \beta^{\prime}$. By Theorem 55.2, there is a unique M_{+}-transformation, M, which maps α to α^{\prime}, A to A^{\prime}, and β to β^{\prime}. We now show that this M_{+}-transformation also maps B to B^{\prime}.

Theorem 58.C

Theorem 58.C. If for points $A, B \in \Omega$ we have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, then there is an M_{+}-transformation which maps A to A^{\prime} and maps B to B^{\prime}.

Proof. Let $A, B \in \Omega$ so that $A B$ is the p-line containing A and B, and let this p-line intersect ω at α and β where the order of the points on the p-line are α, A, B, β. Similarly, let $A^{\prime}, B^{\prime} \in \Omega$ so that $A^{\prime} B^{\prime}$ is the p-line containing A^{\prime} and B^{\prime}, and let this p-line intersect ω at α^{\prime} and β^{\prime} where the order of the points on the p-line are $\alpha^{\prime}, A^{\prime}, B^{\prime}, \beta^{\prime}$. By Theorem 55.2, there is a unique M_{+}-transformation, M, which maps α to α^{\prime}, A to A^{\prime}, and β to β^{\prime}. We now show that this M_{+}-transformation also maps B to B^{\prime}. Since $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$ by hypothesis, then $|\log (\alpha, \beta ; A, B)|=\left|\log \left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)\right|$. By Theorem 58.A each cross-ratio is a positive real number less than 1. So both logarithms are negative real numbers and equal in magnitude, and hence are equal. That is, $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$.

Theorem 58.C

Theorem 58.C. If for points $A, B \in \Omega$ we have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, then there is an M_{+}-transformation which maps A to A^{\prime} and maps B to B^{\prime}.

Proof. Let $A, B \in \Omega$ so that $A B$ is the p-line containing A and B, and let this p-line intersect ω at α and β where the order of the points on the p-line are α, A, B, β. Similarly, let $A^{\prime}, B^{\prime} \in \Omega$ so that $A^{\prime} B^{\prime}$ is the p-line containing A^{\prime} and B^{\prime}, and let this p-line intersect ω at α^{\prime} and β^{\prime} where the order of the points on the p-line are $\alpha^{\prime}, A^{\prime}, B^{\prime}, \beta^{\prime}$. By Theorem 55.2, there is a unique M_{+}-transformation, M, which maps α to α^{\prime}, A to A^{\prime}, and β to β^{\prime}. We now show that this M_{+}-transformation also maps B to B^{\prime}. Since $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$ by hypothesis, then $|\log (\alpha, \beta ; A, B)|=\left|\log \left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)\right|$. By Theorem 58.A each cross-ratio is a positive real number less than 1 . So both logarithms are negative real numbers and equal in magnitude, and hence are equal. That is, $(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)$.

Theorem 58.C (continued)

Theorem 58.C. If for points $A, B \in \Omega$ we have $d(A, B)=d\left(A^{\prime}, B^{\prime}\right)$, then there is an M_{+}-transformation which maps A to A^{\prime} and maps B to B^{\prime}.

Proof (continued). Applying M and using the invariance of the cross-ratio (Theorem 53.4), we have

$$
\begin{gathered}
(\alpha, \beta ; A, B)=(M(\alpha), M(\beta) ; M(A), M(B))=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, M(B)\right) \\
=\left(\alpha^{\prime}, \beta^{\prime} ; A^{\prime}, B^{\prime}\right)
\end{gathered}
$$

so that we must have $M(B)=B^{\prime}$ (as can be seen by expanding the the cross-ratios). So M is the desired M_{+}-transformation.

Theorem 58.2.II

Theorem 58.2.II. In a p-triangle $A B C$, if $d(A, B)=d(A, C)$, then the p-angles $A B C$ and $A C B$ are congruent.

Proof. Consider the two p-triangles $A B C$ and $A C B$. Then we have $A B \stackrel{p}{=} A C$ and $A C \stackrel{p}{=} A B$ by hypothesis, and $\Varangle B A C \stackrel{p}{=} \Varangle C A B$. So by Theorem 57.1 (the General SAS Theorem), we have that the p-triangles $A B C$ and $A C B$ are p-congruent. Therefore $\Varangle A B C \stackrel{p}{=} \Varangle A C B$, as claimed.

Theorem 58.2.II

Theorem 58.2.II. In a p-triangle $A B C$, if $d(A, B)=d(A, C)$, then the p-angles $A B C$ and $A C B$ are congruent.

Proof. Consider the two p-triangles $A B C$ and $A C B$. Then we have $A B \stackrel{p}{=} A C$ and $A C \stackrel{p}{=} A B$ by hypothesis, and $\Varangle B A C \stackrel{p}{=} \Varangle C A B$. So by Theorem 57.1 (the General SAS Theorem), we have that the p-triangles $A B C$ and $A C B$ are p-congruent. Therefore $\Varangle A B C \stackrel{p}{=} \Varangle A C B$, as claimed.

Theorem 58.2.III

Theorem 58.2.III. In any p-triangle $A B C$, the greatest side is opposite the greatest angle.

```
Proof. Suppose that d(A,C)>d(A,B), as
shown in Figure 58.6. Mark off a p-segment
AB' on p-line AC equal to AB so that
d(A,B')=d(A,B) (which can be done by
Note 58.B). Then B' lies on a p-segment AC
and the p-line }B\mp@subsup{B}{}{\prime}\mathrm{ lies inside the angle }ABC\mathrm{ .
Since d(A, 列)=d(A,B), then by Theorem
58.2.II then angles }AB\mp@subsup{B}{}{\prime}\mathrm{ and }A\mp@subsup{B}{}{\prime}B\mathrm{ are equal.
```


Theorem 58.2.III

Theorem 58.2.III. In any p-triangle $A B C$, the greatest side is opposite the greatest angle.

Proof. Suppose that $d(A, C)>d(A, B)$, as shown in Figure 58.6. Mark off a p-segment $A B^{\prime}$ on p-line $A C$ equal to $A B$ so that $d\left(A, B^{\prime}\right)=d(A, B)$ (which can be done by Note 58.B). Then B^{\prime} lies on a p-segment $A C$ and the p-line $B B^{\prime}$ lies inside the angle $A B C$. Since $d\left(A, B^{\prime}\right)=d(A, B)$, then by Theorem

Figure 58.6 58.2.II then angles $A B B^{\prime}$ and $A B^{\prime} B$ are equal.

Since angle $A B C$ is greater than angle $A B B^{\prime}$ by construction, then angle $A B C$ is greater then angle $A B^{\prime} B$. But angle $A B^{\prime} B$ is the exterior angle to angle $B B^{\prime} C$ in p-triangle $B B^{\prime} C$, and therefore exceeds the interior angle $B^{\prime} C B$ by Theorem 58.2. But angle $B^{\prime} C B$ is angle $A C B$, so angle $A B C$ is greater than angle $A B B^{\prime}$ which is greater than angle $B^{\prime} C B$ which equals angle $A C B$

Theorem 58.2.III

Theorem 58.2.III. In any p-triangle $A B C$, the greatest side is opposite the greatest angle.
Proof. Suppose that $d(A, C)>d(A, B)$, as shown in Figure 58.6. Mark off a p-segment $A B^{\prime}$ on p-line $A C$ equal to $A B$ so that $d\left(A, B^{\prime}\right)=d(A, B)$ (which can be done by Note 58.B). Then B^{\prime} lies on a p-segment $A C$ and the p-line $B B^{\prime}$ lies inside the angle $A B C$. Since $d\left(A, B^{\prime}\right)=d(A, B)$, then by Theorem

Figure 58.6 58.2.II then angles $A B B^{\prime}$ and $A B^{\prime} B$ are equal. Since angle $A B C$ is greater than angle $A B B^{\prime}$ by construction, then angle $A B C$ is greater then angle $A B^{\prime} B$. But angle $A B^{\prime} B$ is the exterior angle to angle $B B^{\prime} C$ in p-triangle $B B^{\prime} C$, and therefore exceeds the interior angle $B^{\prime} C B$ by Theorem 58.2. But angle $B^{\prime} C B$ is angle $A C B$, so angle $A B C$ is greater than angle $A B B^{\prime}$ which is greater than angle $B^{\prime} C B$ which equals angle $A C B$.

Theorem 58.2.III (continued)

Theorem 58.2.III. In any p-triangle $A B C$, the greatest side is opposite the greatest angle.

Proof. That is, angle $A B C$ is greater than angle $A C B$. We arrive at this conclusion under the supposition that $d(A, C)>d(A, B)$. So we have that larger angles are opposite larger sides in a p-triangle, and hence the greatest side is opposite the greatest angle, as claimed.

Note. We have also shown that the least side is opposite the least angle.

Theorem 58.2.III (continued)

Theorem 58.2.III. In any p-triangle $A B C$, the greatest side is opposite the greatest angle.

Proof. That is, angle $A B C$ is greater than angle $A C B$. We arrive at this conclusion under the supposition that $d(A, C)>d(A, B)$. So we have that larger angles are opposite larger sides in a p-triangle, and hence the greatest side is opposite the greatest angle, as claimed.

Note. We have also shown that the least side is opposite the least angle.

Theorem 58.2.IV

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$. Proof. Notice that if either $A B$ or $B C$ is the longest side of the p-triangle, then the inequality holds. So we can assume without loss of generality that the longest side is side $A C$. Create angle $B^{\prime} A C$ equal to angle $B A C$ where point B^{\prime} is on the side of p-line $A C$ opposite of the side of $A C$ On the opposite side of the p-line $A C$ to B, mark off angle $B^{\prime \prime} A C$ equal which is equal to angle BAC (which can be accomplished by a Möbius transformation that consists of a rotation about point A that sends p-line $A B$ to p-line $A C$).

Theorem 58.2.IV

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$. Proof. Notice that if either $A B$ or $B C$ is the longest side of the p-triangle, then the inequality holds. So we can assume without loss of generality that the longest side is side $A C$. Create angle $B^{\prime} A C$ equal to angle $B A C$ where point B^{\prime} is on the side of p-line $A C$ opposite of the side of $A C$ On the opposite side of the p-line $A C$ to B, mark off angle $B^{\prime \prime} A C$ equal which is equal to angle $B A C$ (which can be accomplished by a Möbius transformation that consists of a rotation about point A that sends p-line $A B$ to p-line $A C$). Choose point B^{\prime}
on p-line $A B^{\prime \prime}$ where we B^{\prime} is on the same side

of A on the p-line as is $B^{\prime \prime}$ and $d\left(A, B^{\prime}\right)=d(A, B)$ (which can be done by Note 58.B). Then angle $B^{\prime} A C$ equals angle $B A C$ (in size, but maybe not in sense); see Figure 58.7.

Theorem 58.2.IV

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$. Proof. Notice that if either $A B$ or $B C$ is the longest side of the p-triangle, then the inequality holds. So we can assume without loss of generality that the longest side is side $A C$. Create angle $B^{\prime} A C$ equal to angle $B A C$ where point B^{\prime} is on the side of p-line $A C$ opposite of the side of $A C$ On the opposite side of the p-line $A C$ to B, mark off angle $B^{\prime \prime} A C$ equal which is equal to angle $B A C$ (which can be accomplished by a Möbius transformation that consists of a rotation about point A that sends p-line $A B$ to p-line $A C$). Choose point B^{\prime} on p-line $A B^{\prime \prime}$ where we B^{\prime} is on the same side

Figure 58.7 of A on the p-line as is $B^{\prime \prime}$ and $d\left(A, B^{\prime}\right)=d(A, B)$ (which can be done by Note 58.B). Then angle $B^{\prime} A C$ equals angle $B A C$ (in size, but maybe not in sense); see Figure 58.7.

Theorem 58.2.IV (continued)

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$. Proof (continued). Let the point of intersection of p-lines $B B^{\prime}$ and $A C$ be N (since B and B^{\prime} are on opposite sides of $A C$ then there must be some such point N). Then p-triangles $A N B$ and $A N B^{\prime}$ are p-congruent by by Side-Angle-Side (Theorem 57.1.II). Since the sum of the angles BNA and $B^{\prime} N A$ is two right angles, so (since angles $A N B$ equals angle $A N B^{\prime}$) are both right angles. Then angles $B N C$ and $B^{\prime} N C$ are also right angles. So by Theorem 58.2.III, we have $d(A, B)>d(B, C)$ and $d(B, C)>d(N, C)$. Hence, if N lies on the p-segment $A C$, then we have by Theorem 58.2.I that $d(A, B)+d(B, C)>d(A, N)+d(N, C)=d(A, C)$, as claimed.

Theorem 58.2.IV (continued)

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$. Proof (continued). Let the point of intersection of p-lines $B B^{\prime}$ and $A C$ be N (since B and B^{\prime} are on opposite sides of $A C$ then there must be some such point N). Then p-triangles $A N B$ and $A N B^{\prime}$ are p-congruent by by Side-Angle-Side (Theorem 57.1.II). Since the sum of the angles BNA and $B^{\prime} N A$ is two right angles, so (since angles $A N B$ equals angle $A N B^{\prime}$) are both right angles. Then angles $B N C$ and $B^{\prime} N C$ are also right angles. So by Theorem 58.2.III, we have $d(A, B)>d(B, C)$ and $d(B, C)>d(N, C)$. Hence, if N lies on the p-segment $A C$, then we have by Theorem 58.2.I that $d(A, B)+d(B, C)>d(A, N)+d(N, C)=d(A, C)$, as claimed.

If N is not on the p-segment $A C$, we still have $d(A, B)>d(A, N)$ and since in this case $d(A, N)>d(A, C)$, we would have $d(A, B)>d(A, C)$, but this contradicts the fact that we are assuming that $A C$ is the longest side of p-triangle $A B C$. So we cannot have N not on p-segment $A C$, so that the result holds as aregued above.

Theorem 58.2.IV (continued)

Theorem 58.2.IV. In any p-triangle $A B C, d(A, B)+d(B, C)>d(A, C)$.
Proof (continued). Let the point of intersection of p-lines $B B^{\prime}$ and $A C$ be N (since B and B^{\prime} are on opposite sides of $A C$ then there must be some such point N). Then p-triangles $A N B$ and $A N B^{\prime}$ are p-congruent by by Side-Angle-Side (Theorem 57.1.II). Since the sum of the angles BNA and $B^{\prime} N A$ is two right angles, so (since angles $A N B$ equals angle $A N B^{\prime}$) are both right angles. Then angles $B N C$ and $B^{\prime} N C$ are also right angles. So by Theorem 58.2.III, we have $d(A, B)>d(B, C)$ and $d(B, C)>d(N, C)$. Hence, if N lies on the p-segment $A C$, then we have by Theorem 58.2.I that $d(A, B)+d(B, C)>d(A, N)+d(N, C)=d(A, C)$, as claimed.

If N is not on the p-segment $A C$, we still have $d(A, B)>d(A, N)$ and since in this case $d(A, N)>d(A, C)$, we would have $d(A, B)>d(A, C)$, but this contradicts the fact that we are assuming that $A C$ is the longest side of p-triangle $A B C$. So we cannot have N not on p-segment $A C$, so that the result holds as aregued above.

