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Chapter VI. Mappings of the Inversive Plane
59. Horocycles—Proofs of Theorems
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Theorem 59.1

Theorem 59.1 (continued 1)

Proof (continued).
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Figure 59.1

Then D lies in the segment AB since d(A, B) > d(A’, B’) by hypothesis.
But point E may coincide with point C, or it may lie in AC extended, or it
may lie in segment AC. If E coincides with C, then by Side-Angle-Side
(Theorem 57.1) the triangles ADC and A'B’C’ are congruent. But then
angle ADC = angle A'B’ = angle ABC, in CONTRADICTION to
Theorem 58.2 which implies that angle ADC > angle ABC. Hence E
cannot coincide with C.
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Theorem 59.1

Theorem 59.1. Two p-triangles are p-congruent if the three angles of the
one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that A = JA', 9B =494B', 4C =4 C".
ASSUME that the p-triangles ABC and A’B’C’ are not p-congruent.
Then some corresponding pair of sides are not equal, say

d(A,B) # d(A', B"). We may assume, without loss of generality, that
d(A,B) > d(A,B’). On AB and AC mark off lengths equal to A'B" and
A'C’, respectively (see Note 58B). Then label the endpoints on AB and
AC as D and E, respectively.
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Figure 59.1

Theorem 59.1 (continued 2)

Proof (continued).
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Figure 59.1

If E lies in AC extended then again triangles ADE and A'B’C’ are
congruent by SAS (Theorem 57.1), and angle AED = angle AC'B’ =
angle ACB. Again, this CONTRADICTS Theorem 58.2 which implies
angle ACB > angle AED. Hence E cannot lie in AC extended. Therefore
E must lie between A and C, as shown in Figure 59.1.
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Theorem 59.1 (continued 3)

Proof (continued).

A D B A B
Figure 59.1

But if we consider the quadrilateral BCED, the sum of the angles is 27
(because supplemental angles in the quadrilateral). But a quadrilateral can
be divided into two triangles, so the Theorem 58.1 the angle sum of a
quadrilateral must be less than 27, another CONTRADICTION. Since
every possible location of point E leads to a contradiction, then our
original assumption that p-triangles ABC and A'B’C’ are not p-congruent
is false. That is, p-triangles ABC and A’B’C’ are p-congruent, as
claimed. ]

Theorem 59.2.1

Theorem 59.2.1 (continued 1)

Proof (continued).

Now consider a circle & with center
A’ which is orthogonal to w (see
Figure 59.2 modified). If we invert
with respect to &, then w is

mapped to itself and the inside of w

is mapped to itself (these claims follow
from Exercise 20.2), and A is mapped to
O (the center of w) by Theorem 23.3
(maybe). The circle € is mapped to the ~ Figure 59.2 modified

line OP’" where P’ is the inverse of P with respect to Z (since two points
determine a p-line). Let the diameter OP’ of w intersect w at points o’
and /' (and so these are inverses of a and /3 with respect to 2).
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Theorem 59.2.1

Theorem 59.2.1

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

Proof. The p-lines through A all pass
through the fixed point A’, where A’

is the inverse of A in w by Theorem 20.2 in
Chapter Il, “Circles.” Let P be a point on
the p-circle centered at A. Let % be the
p-line through P and A. Then % passes
through A’, since inversion with respect to w
interchanges A and A’ and maps % to itself.

Figure 59.2
With « and 3 as the points of intersection of ¥ and w, we have by the
definition of a p-circle and metric d that |log(«, 5; A, P)| = r.

Theorem 59.2.1

Theorem 59.2.1 (continued 2)

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to & is a conjugate
Mobius transformation, but by Exercise 57.10 we have that the
cross-ratios («, 3, A, P) and (¢, 3, O, P’) are equal. Hence

d(O, P') =|log(c/,3; O, P")| = |log(c, 3, A, P)| = d(A,P) = r.
Recall that (¢/, 3, O, P) is real and between 0 and 1, so this implies:

r=d(0,P') = |log(c/,3"; 0, P)|

o, @0 =P a5 P)
TR0 =3 T Py
or log —o/(ﬁ’ i) =—r,or —O/(ﬁ, — ) =e
F—P) " " F =P
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Theorem 59.2.1

Theorem 59.2.1 (continued 3)

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

! ! —r _ 1
Proof (continued). Solving for P’ we get P’ = M.
e —o
Therefore, since |o/| = || =1,
= Bl 1] JoBlle 1] _ Jerr ~1]
|B'e™" — | || %e—f -1 %e—r -1

Now the p-line through O and P’ is a diameter of w, so o/ and 3 are on
opposite ends of a diameter of the unit circle and hence are of the form

o/ = e and B = /(0+7) for some 6. So /o’ = €/(917™) /el = i = 1.
e " -1 )

So we have |P'| = % a constant. So P’ is of a constant modulus
pe

and the locus of all such P’ form a Euclidean circle with center O.
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Theorem 59.2.11

Theorem 59.2.11

Theorem 59.2.1. Two horocycles tangent to w at the same point 3 cut
off equal p-distances on the p-lines through .

Proof. Let m and n be two horocycles
tangent to w at point 3 (see Figure 59.3).
Suppose that a p-line through 8 meets w
again at the point «, and intersects m at the
p-point A and intersects n at the p-point B.
By Exercise 57.11, inversion is a conjugate
Mobius transformation. By Exercise 57.10,
p-lengths are unchanged by a conjugate
Mobius transformation.
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Figure 59.3
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Theorem 59.2.1

Theorem 59.2.1 (continued 4)

Proof (continued). This circle is orthogonal to any p-line through O
(since all such p-lines are diameters of w). Now inversion with respect to
2 maps every p-line through O to a p-line through A (and all p-lines
through A are images of p-lines through O) and maps the Euclidean circle
|P'| =|e~" —1]/(e”" + 1) to a Euclidean circle containing point P, as
claimed. Since inversion preserves the sizes of angles (by Theorem 22.2),
then we have that every p-line through A is orthogonal to the p-circle
centered at A, as claimed. O]

Figure 59.2 modified
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Theorem 59.2.11

Theorem 59.2.11 (continued 1)

Theorem 59.2.1. Two horocycles tangent to w at the same point 3 cut
off equal p-distances on the p-lines through .

Proof (continued). Next, we invert the
configuration given in Figure 59.3 about a
circle with center (3 (see Figure 59.4).

The circles w, m, and n invert to parallel lines
W', m', and n’, and the p-line AB inverts

into a line o/ B’A’, where o/ is the point
where it intersects w’, B’ is the point where
it intersects n’, and A’ is the point where it 7 n’
intersects m’. This inversion maps (3 to Figure 59.4

o0 in Cy. The cross-ratio («, 3; A, B) has under inversion become the
cross-ratio (o/,00; A', B') = (o/ — A")/(a/ — B').

N
3

December 31, 2021 13 /14



Theorem 59.2.11 (continued 2)

Theorem 59.2.1. Two horocycles tangent to w at the same point 3 cut

off equal p-distances on the p-lines through 5.

Proof (continued). By Theorem 58.B,
d(A,B) = (a,3; A, B) = (¢/,00; A, B"). But for parallel lines o« — A is
constant and o/ — B’ is constant, so

d(A,B) = (d/,00; A, B") = (¢/ — A)/(d/ — B')

is constant. Hence d(A, B) is independent of the particular p-line through
B which cuts A and B on the given horocycles, as claimed. O

3 * Figure 59.4
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