Real Analysis

Chapter VI. Mappings of the Inversive Plane 59. Horocycles—Proofs of Theorems

Real Analysis

Theorem 59.1. Two *p*-triangles are *p*-congruent if the three angles of the one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that A = A', B = A', C = C'. ASSUME that the *p*-triangles *ABC* and *A'B'C'* are not *p*-congruent. Then some corresponding pair of sides are not equal, say $d(A, B) \neq d(A', B')$. We may assume, without loss of generality, that d(A, B) > d(A', B'). On *AB* and *AC* mark off lengths equal to *A'B'* and *A'C'*, respectively (see Note 58B). Then label the endpoints on *AB* and *AC* as *D* and *E*, respectively.

Theorem 59.1. Two *p*-triangles are *p*-congruent if the three angles of the one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that A = A', B = A', C = C'. ASSUME that the *p*-triangles *ABC* and *A'B'C'* are not *p*-congruent. Then some corresponding pair of sides are not equal, say $d(A, B) \neq d(A', B')$. We may assume, without loss of generality, that d(A, B) > d(A', B'). On *AB* and *AC* mark off lengths equal to *A'B'* and *A'C'*, respectively (see Note 58B). Then label the endpoints on *AB* and *AC* as *D* and *E*, respectively.

Real Analysis

3 / 14

Theorem 59.1. Two *p*-triangles are *p*-congruent if the three angles of the one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that A = A', B = A', C = C'. ASSUME that the *p*-triangles *ABC* and *A'B'C'* are not *p*-congruent. Then some corresponding pair of sides are not equal, say $d(A, B) \neq d(A', B')$. We may assume, without loss of generality, that d(A, B) > d(A', B'). On *AB* and *AC* mark off lengths equal to *A'B'* and *A'C'*, respectively (see Note 58B). Then label the endpoints on *AB* and *AC* as *D* and *E*, respectively.

Real Analysis

Theorem 59.1 (continued 1)

Proof (continued).

Then D lies in the segment AB since d(A, B) > d(A', B') by hypothesis. But point E may coincide with point C, or it may lie in AC extended, or it may lie in segment AC. If E coincides with C, then by Side-Angle-Side (Theorem 57.1) the triangles ADC and A'B'C' are congruent. But then angle ADC = angle A'B' = angle ABC, in CONTRADICTION to Theorem 58.2 which implies that angle ADC > angle ABC. Hence E cannot coincide with C.

- ()

Theorem 59.1 (continued 1)

Proof (continued).

Then D lies in the segment AB since d(A, B) > d(A', B') by hypothesis. But point E may coincide with point C, or it may lie in AC extended, or it may lie in segment AC. If E coincides with C, then by Side-Angle-Side (Theorem 57.1) the triangles ADC and A'B'C' are congruent. But then angle ADC = angle A'B' = angle ABC, in CONTRADICTION to Theorem 58.2 which implies that angle ADC > angle ABC. Hence E cannot coincide with C.

(

Theorem 59.1 (continued 2)

Proof (continued).

If *E* lies in *AC* extended then again triangles *ADE* and *A'B'C'* are congruent by SAS (Theorem 57.1), and angle *AED* = angle *A'C'B'* = angle *ACB*. Again, this CONTRADICTS Theorem 58.2 which implies angle *ACB* > angle *AED*. Hence *E* cannot lie in *AC* extended. Therefore *E* must lie between *A* and *C*, as shown in Figure 59.1.

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1

But if we consider the quadrilateral *BCED*, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π , another CONTRADICTION.

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1

But if we consider the quadrilateral *BCED*, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π , another CONTRADICTION. Since every possible location of point *E* leads to a contradiction, then our original assumption that *p*-triangles *ABC* and *A'B'C'* are not *p*-congruent is false. That is, *p*-triangles *ABC* and *A'B'C'* are *p*-congruent, as claimed.

- (

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1

But if we consider the quadrilateral *BCED*, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π , another CONTRADICTION. Since every possible location of point *E* leads to a contradiction, then our original assumption that *p*-triangles *ABC* and *A'B'C'* are not *p*-congruent is false. That is, *p*-triangles *ABC* and *A'B'C'* are *p*-congruent, as claimed.

- (

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof. The *p*-lines through *A* all pass through the fixed point *A'*, where *A'* is the inverse of *A* in ω by Theorem 20.2 in Chapter II, "Circles." Let *P* be a point on the *p*-circle centered at *A*. Let \mathscr{C} be the *p*-line through *P* and *A*. Then \mathscr{C} passes through *A'*, since inversion with respect to ω interchanges *A* and *A'* and maps \mathscr{C} to itself. With α and β as the points of intersection of \mathscr{C} and ω , we have by the definition of a *p*-circle and metric *d* that $|\log(\alpha, \beta; A, P)| = r$. **Theorem 59.2.I.** A *p*-circle, center A is a Euclidean circle orthogonal to the family of *p*-lines which pass through A.

Proof. The *p*-lines through A all pass through the fixed point A', where A'is the inverse of A in ω by Theorem 20.2 in Chapter II, "Circles." Let P be a point on õ the *p*-circle centered at A. Let \mathscr{C} be the *p*-line through *P* and *A*. Then \mathscr{C} passes through A', since inversion with respect to ω interchanges A and A' and maps \mathscr{C} to itself. With α and β as the points of intersection of \mathscr{C} and ω , we have by the definition of a *p*-circle and metric *d* that $|\log(\alpha, \beta; A, P)| = r$.

Figure 59.2

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof. The *p*-lines through *A* all pass through the fixed point *A'*, where *A'* is the inverse of *A* in ω by Theorem 20.2 in Chapter II, "Circles." Let *P* be a point on the *p*-circle centered at *A*. Let \mathscr{C} be the *p*-line through *P* and *A*. Then \mathscr{C} passes through *A'*, since inversion with respect to ω interchanges *A* and *A'* and maps \mathscr{C} to itself. Figure 59.2 With α and β as the points of intersection of \mathscr{C} and ω , we have by the definition of a *p*-circle and metric *d* that $|\log(\alpha, \beta; A, P)| = r$.

Proof (continued).

Now consider a circle \mathscr{D} with center A' which is orthogonal to ω (see Figure 59.2 modified). If we invert with respect to \mathcal{D} , then ω is mapped to itself and the inside of ω is mapped to itself (these claims follow from Exercise 20.2), and A is mapped to O (the center of ω) by Theorem 23.3 (maybe). The circle \mathscr{C} is mapped to the

Figure 59.2 modified

line OP' where P' is the inverse of P with respect to \mathcal{D} (since two points determine a p-line). Let the diameter OP' of ω intersect ω at points α' and β' (and so these are inverses of α and β with respect to \mathcal{D}).

Proof (continued).

Now consider a circle \mathscr{D} with center A' which is orthogonal to ω (see Figure 59.2 modified). If we invert with respect to \mathcal{D} , then ω is mapped to itself and the inside of ω is mapped to itself (these claims follow from Exercise 20.2), and A is mapped to O (the center of ω) by Theorem 23.3 Figure 59.2 modified (maybe). The circle \mathscr{C} is mapped to the line OP' where P' is the inverse of P with respect to \mathcal{D} (since two points determine a *p*-line). Let the diameter OP' of ω intersect ω at points α' and β' (and so these are inverses of α and β with respect to \mathcal{D}).

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to \mathscr{D} is a conjugate Möbius transformation, but by Exercise 57.10 we have that the cross-ratios (α, β, A, P) and (α', β', O, P') are equal. Hence

$$d(O,P') = |\log(lpha',eta';O,P')| = |\log(lpha,eta,A,P)| = d(A,P) = r.$$

Recall that (α', β', O, P') is real and between 0 and 1, so this implies:

$$r = d(O, P') = |\log(\alpha', \beta'; O, P)|$$
$$= \left|\log\frac{(\alpha' - 0)(\beta' - P')}{(\beta' - 0)(\alpha' - \beta')}\right| = -\log\frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')},$$
$$r \log\frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')} = -r, \text{ or } \frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')} = e^{-r}.$$

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to \mathscr{D} is a conjugate Möbius transformation, but by Exercise 57.10 we have that the cross-ratios (α, β, A, P) and (α', β', O, P') are equal. Hence

$$d(O,P') = |\log(\alpha',\beta';O,P')| = |\log(\alpha,\beta,A,P)| = d(A,P) = r.$$

Recall that (α', β', O, P') is real and between 0 and 1, so this implies:

$$r = d(O, P') = |\log(\alpha', \beta'; O, P)|$$
$$= \left|\log\frac{(\alpha' - 0)(\beta' - P')}{(\beta' - 0)(\alpha' - \beta')}\right| = -\log\frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')},$$
or $\log\frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')} = -r$, or $\frac{\alpha'(\beta' - P')}{\beta'(\alpha' - P')} = e^{-r}.$

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Solving for P' we get $P' = \frac{\alpha'\beta'(e^{-r}-1)}{\beta'e^{-r}-\alpha'}$. Therefore, since $|\alpha'| = |\beta'| = 1$,

$$|P'| = \frac{|\alpha'\beta'||e^{-r} - 1|}{|\beta'e^{-r} - \alpha'|} = \frac{|\alpha'\beta'||e^{-r} - 1|}{|\alpha'|\left|\frac{\beta'}{\alpha'}e^{-r} - 1\right|} = \frac{|e^{-r} - 1|}{\left|\frac{\beta'}{\alpha'}e^{-r} - 1\right|}$$

Now the *p*-line through *O* and *P'* is a diameter of ω , so α' and β' are on opposite ends of a diameter of the unit circle and hence are of the form $\alpha' = e^{i\theta}$ and $\beta' = e^{i(\theta+\pi)}$ for some θ . So $\beta'/\alpha' = e^{i(\theta+\pi)}/e^{i\theta} = e^{i\pi} = -1$. So we have $|P'| = \frac{|e^{-r} - 1|}{e^{-r} + 1}$, a constant. So *P'* is of a constant modulus and the locus of all such *P'* form a Euclidean circle with center *O*.

Theorem 59.2.1. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Solving for P' we get $P' = \frac{\alpha'\beta'(e^{-r}-1)}{\beta'e^{-r}-\alpha'}$. Therefore, since $|\alpha'| = |\beta'| = 1$,

$$|P'| = \frac{|\alpha'\beta'||e^{-r} - 1|}{|\beta'e^{-r} - \alpha'|} = \frac{|\alpha'\beta'||e^{-r} - 1|}{|\alpha'|\left|\frac{\beta'}{\alpha'}e^{-r} - 1\right|} = \frac{|e^{-r} - 1|}{\left|\frac{\beta'}{\alpha'}e^{-r} - 1\right|}$$

Now the *p*-line through *O* and *P'* is a diameter of ω , so α' and β' are on opposite ends of a diameter of the unit circle and hence are of the form $\alpha' = e^{i\theta}$ and $\beta' = e^{i(\theta+\pi)}$ for some θ . So $\beta'/\alpha' = e^{i(\theta+\pi)}/e^{i\theta} = e^{i\pi} = -1$. So we have $|P'| = \frac{|e^{-r} - 1|}{e^{-r} + 1}$, a constant. So *P'* is of a constant modulus and the locus of all such *P'* form a Euclidean circle with center *O*.

Proof (continued). This circle is orthogonal to any *p*-line through *O* (since all such *p*-lines are diameters of ω). Now inversion with respect to \mathscr{D} maps every *p*-line through *O* to a *p*-line through *A* (and all *p*-lines through *A* are images of *p*-lines through *O*) and maps the Euclidean circle $|P'| = |e^{-r} - 1|/(e^{-r} + 1)$ to a Euclidean circle containing point *P*, as claimed. Since inversion preserves the sizes of angles (by Theorem 22.2), then we have that every *p*-line through *A* is orthogonal to the *p*-circle centered at *A*, as claimed.

Theorem 59.2.II

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Real Analysis

Proof. Let *m* and *n* be two horocycles tangent to ω at point β (see Figure 59.3). Suppose that a *p*-line through β meets ω again at the point α , and intersects *m* at the *p*-point *A* and intersects *n* at the *p*-point *B*. By Exercise 57.11, inversion is a conjugate Möbius transformation. By Exercise 57.10, *p*-lengths are unchanged by a conjugate Möbius transformation.

Theorem 59.2.II

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof. Let *m* and *n* be two horocycles tangent to ω at point β (see Figure 59.3). Suppose that a *p*-line through β meets ω again at the point α , and intersects *m* at the *p*-point *A* and intersects *n* at the *p*-point *B*. By Exercise 57.11, inversion is a conjugate Möbius transformation. By Exercise 57.10, *p*-lengths are unchanged by a conjugate Möbius transformation.

Theorem 59.2.II

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof. Let *m* and *n* be two horocycles tangent to ω at point β (see Figure 59.3). Suppose that a *p*-line through β meets ω again at the point α , and intersects *m* at the *p*-point *A* and intersects *n* at the *p*-point *B*. By Exercise 57.11, inversion is a conjugate Möbius transformation. By Exercise 57.10, *p*-lengths are unchanged by a conjugate Möbius transformation.

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4). The circles ω , m, and n invert to parallel lines ω' , m', and n', and the *p*-line *AB* inverts into a line $\alpha'B'A'$, where α' is the point where it intersects ω' , B' is the point where it intersects n', and A' is the point where it intersects m'.

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4). The circles ω , *m*, and *n* invert to parallel lines ω' , m', and n', and the p-line AB inverts into a line $\alpha' B' A'$, where α' is the point where it intersects ω' , B' is the point where it intersects n', and A' is the point where it intersects m'. This inversion maps β to ∞ in \mathbb{C}_{∞} . The cross-ratio $(\alpha, \beta; A, B)$ has under inversion become the cross-ratio $(\alpha', \infty; A', B') = (\alpha' - A')/(\alpha' - B').$

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4). The circles ω , *m*, and *n* invert to parallel lines ω' , m', and n', and the p-line AB inverts into a line $\alpha' B' A'$, where α' is the point where it intersects ω' , B' is the point where it intersects n', and A' is the point where it intersects m'. This inversion maps β to Figure 59.4 ∞ in \mathbb{C}_{∞} . The cross-ratio $(\alpha, \beta; A, B)$ has under inversion become the cross-ratio $(\alpha', \infty; A', B') = (\alpha' - A')/(\alpha' - B').$

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4). The circles ω , *m*, and *n* invert to parallel lines ω' , m', and n', and the p-line AB inverts into a line $\alpha' B' A'$, where α' is the point where it intersects ω' , B' is the point where it intersects n', and A' is the point where it intersects m'. This inversion maps β to Figure 59.4 ∞ in \mathbb{C}_{∞} . The cross-ratio $(\alpha, \beta; A, B)$ has under inversion become the cross-ratio $(\alpha', \infty; A', B') = (\alpha' - A')/(\alpha' - B').$

Theorem 59.2.1. Two horocycles tangent to ω at the same point β cut off equal *p*-distances on the *p*-lines through β .

Proof (continued). By Theorem 58.B, $d(A, B) = (\alpha, \beta; A, B) = (\alpha', \infty; A', B')$. But for parallel lines $\alpha - A'$ is constant and $\alpha' - B'$ is constant, so

$$d(A,B) = (lpha',\infty;A',B') = (lpha'-A')/(lpha'-B')$$

is constant. Hence d(A, B) is independent of the particular *p*-line through β which cuts A and B on the given horocycles, as claimed.

