Real Analysis

Chapter VI. Mappings of the Inversive Plane

 59. Horocycles-Proofs of Theorems

Table of contents

(1) Theorem 59.1
(2) Theorem 59.2.1
(3) Theorem 59.2.II

Theorem 59.1

Theorem 59.1. Two p-triangles are p-congruent if the three angles of the one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that $\Varangle A=\Varangle A^{\prime}, \Varangle B=\Varangle B^{\prime}, \Varangle C=\Varangle C^{\prime}$. ASSUME that the p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are not p-congruent. Then some corresponding pair of sides are not equal, say $d(A, B) \neq d\left(A^{\prime}, B^{\prime}\right)$. We may assume, without loss of generality, that $d(A, B)>d\left(A^{\prime}, B^{\prime}\right)$. On $A B$ and $A C$ mark off lengths equal to $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$, respectively (see Note 58B). Then label the endpoints on $A B$ and $A C$ as D and E, respectively.

Theorem 59.1

Theorem 59.1. Two p-triangles are p-congruent if the three angles of the one are respectively equal to the three angles of the other.
Proof. In Figure 59.1, suppose that $\Varangle A=\Varangle A^{\prime}, \Varangle B=\Varangle B^{\prime}, \Varangle C=\Varangle C^{\prime}$. ASSUME that the p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are not p-congruent.
Then some corresponding pair of sides are not equal, say $d(A, B) \neq d\left(A^{\prime}, B^{\prime}\right)$. We may assume, without loss of generality, that $d(A, B)>d\left(A^{\prime}, B^{\prime}\right)$. On $A B$ and $A C$ mark off lengths equal to $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$, respectively (see Note 58B). Then label the endpoints on $A B$ and $A C$ as D and E, respectively.

Figure 59.1

Theorem 59.1

Theorem 59.1. Two p-triangles are p-congruent if the three angles of the one are respectively equal to the three angles of the other.
Proof. In Figure 59.1, suppose that $\Varangle A=\Varangle A^{\prime}, \Varangle B=\Varangle B^{\prime}, \Varangle C=\Varangle C^{\prime}$. ASSUME that the p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are not p-congruent.
Then some corresponding pair of sides are not equal, say $d(A, B) \neq d\left(A^{\prime}, B^{\prime}\right)$. We may assume, without loss of generality, that $d(A, B)>d\left(A^{\prime}, B^{\prime}\right)$. On $A B$ and $A C$ mark off lengths equal to $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$, respectively (see Note 58B). Then label the endpoints on $A B$ and $A C$ as D and E, respectively.

Figure 59.1

Theorem 59.1 (continued 1)

Proof (continued).

Figure 59.1
Then D lies in the segment $A B$ since $d(A, B)>d\left(A^{\prime}, B^{\prime}\right)$ by hypothesis. But point E may coincide with point C, or it may lie in $A C$ extended, or it may lie in segment $A C$. If E coincides with C, then by Side-Angle-Side (Theorem 57.1) the triangles $A D C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent. But then angle $A D C=$ angle $A^{\prime} B^{\prime}=$ angle $A B C$, in CONTRADICTION to Theorem 58.2 which implies that angle $A D C>$ angle $A B C$. Hence E cannot coincide with C.

Theorem 59.1 (continued 1)

Proof (continued).

Figure 59.1
Then D lies in the segment $A B$ since $d(A, B)>d\left(A^{\prime}, B^{\prime}\right)$ by hypothesis. But point E may coincide with point C, or it may lie in $A C$ extended, or it may lie in segment $A C$. If E coincides with C, then by Side-Angle-Side (Theorem 57.1) the triangles $A D C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent. But then angle $A D C=$ angle $A^{\prime} B^{\prime}=$ angle $A B C$, in CONTRADICTION to Theorem 58.2 which implies that angle $A D C>$ angle $A B C$. Hence E cannot coincide with C.

Theorem 59.1 (continued 2)

Proof (continued).

Figure 59.1
If E lies in $A C$ extended then again triangles $A D E$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent by SAS (Theorem 57.1), and angle $A E D=$ angle $A^{\prime} C^{\prime} B^{\prime}=$ angle $A C B$. Again, this CONTRADICTS Theorem 58.2 which implies angle $A C B>$ angle $A E D$. Hence E cannot lie in $A C$ extended. Therefore E must lie between A and C, as shown in Figure 59.1.

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1
But if we consider the quadrilateral $B C E D$, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π, another CONTRADICTION.

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1
But if we consider the quadrilateral $B C E D$, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π, another CONTRADICTION. Since every possible location of point E leads to a contradiction, then our original assumption that p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are not p-congruent is false. That is, p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are p-congruent, as claimed.

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1
But if we consider the quadrilateral $B C E D$, the sum of the angles is 2π (because supplemental angles in the quadrilateral). But a quadrilateral can be divided into two triangles, so the Theorem 58.1 the angle sum of a quadrilateral must be less than 2π, another CONTRADICTION. Since every possible location of point E leads to a contradiction, then our original assumption that p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are not p-congruent is false. That is, p-triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are p-congruent, as claimed.

Theorem 59.2.I

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof. The p-lines through A all pass
through the fixed point A^{\prime}, where A^{\prime}
is the inverse of A in ω by Theorem 20.2 in
Chapter II, "Circles." Let P be a point on the p-circle centered at A. Let \mathscr{C} be the p-line through P and A. Then \mathscr{C} passes through A^{\prime}, since inversion with respect to ω interchanges A and A^{\prime} and maps \mathscr{C} to itself. With α and β as the points of intersection of \mathscr{C} and ω, we have by the definition of a p-circle and metric d that $|\log (\alpha, \beta ; A, P)|=r$.

Theorem 59.2.I

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof. The p-lines through A all pass through the fixed point A^{\prime}, where A^{\prime} is the inverse of A in ω by Theorem 20.2 in Chapter II, "Circles." Let P be a point on the p-circle centered at A. Let \mathscr{C} be the p-line through P and A. Then \mathscr{C} passes through A^{\prime}, since inversion with respect to ω interchanges A and A^{\prime} and maps \mathscr{C} to itself.

Figure 59.2 With α and β as the points of intersection of \mathscr{C} and ω, we have by the definition of a p-circle and metric d that $|\log (\alpha, \beta ; A, P)|=r$.

Theorem 59.2.I

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof. The p-lines through A all pass through the fixed point A^{\prime}, where A^{\prime} is the inverse of A in ω by Theorem 20.2 in Chapter II, "Circles." Let P be a point on the p-circle centered at A. Let \mathscr{C} be the p-line through P and A. Then \mathscr{C} passes through A^{\prime}, since inversion with respect to ω interchanges A and A^{\prime} and maps \mathscr{C} to itself.

Figure 59.2 With α and β as the points of intersection of \mathscr{C} and ω, we have by the definition of a p-circle and metric d that $|\log (\alpha, \beta ; A, P)|=r$.

Theorem 59.2.I (continued 1)

Proof (continued).

Now consider a circle \mathscr{D} with center A^{\prime} which is orthogonal to ω (see Figure 59.2 modified). If we invert with respect to \mathscr{D}, then ω is mapped to itself and the inside of ω is mapped to itself (these claims follow from Exercise 20.2), and A is mapped to O (the center of ω) by Theorem 23.3 (maybe). The circle \mathscr{C} is mapped to the

Figure 59.2 modified line $O P^{\prime}$ where P^{\prime} is the inverse of P with respect to \mathscr{D} (since two points determine a p-line). Let the diameter $O P^{\prime}$ of ω intersect ω at points α^{\prime} and β^{\prime} (and so these are inverses of α and β with respect to \mathscr{D}).

Theorem 59.2.I (continued 1)

Proof (continued).

Now consider a circle \mathscr{D} with center A^{\prime} which is orthogonal to ω (see Figure 59.2 modified). If we invert with respect to \mathscr{D}, then ω is mapped to itself and the inside of ω is mapped to itself (these claims follow from Exercise 20.2), and A is mapped to O (the center of ω) by Theorem 23.3 (maybe). The circle \mathscr{C} is mapped to the

Figure 59.2 modified line $O P^{\prime}$ where P^{\prime} is the inverse of P with respect to \mathscr{D} (since two points determine a p-line). Let the diameter $O P^{\prime}$ of ω intersect ω at points α^{\prime} and β^{\prime} (and so these are inverses of α and β with respect to \mathscr{D}).

Theorem 59.2.I (continued 2)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to \mathscr{D} is a conjugate Möbius transformation, but by Exercise 57.10 we have that the cross-ratios (α, β, A, P) and $\left(\alpha^{\prime}, \beta^{\prime}, O, P^{\prime}\right)$ are equal. Hence

$$
d\left(O, P^{\prime}\right)=\left|\log \left(\alpha^{\prime}, \beta^{\prime} ; O, P^{\prime}\right)\right|=|\log (\alpha, \beta, A, P)|=d(A, P)=r
$$

Recall that $\left(\alpha^{\prime}, \beta^{\prime}, O, P^{\prime}\right)$ is real and between 0 and 1 , so this implies:

Theorem 59.2.I (continued 2)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to \mathscr{D} is a conjugate Möbius transformation, but by Exercise 57.10 we have that the cross-ratios (α, β, A, P) and $\left(\alpha^{\prime}, \beta^{\prime}, O, P^{\prime}\right)$ are equal. Hence

$$
d\left(O, P^{\prime}\right)=\left|\log \left(\alpha^{\prime}, \beta^{\prime} ; O, P^{\prime}\right)\right|=|\log (\alpha, \beta, A, P)|=d(A, P)=r
$$

Recall that $\left(\alpha^{\prime}, \beta^{\prime}, O, P^{\prime}\right)$ is real and between 0 and 1 , so this implies:

$$
\begin{gathered}
r=d\left(O, P^{\prime}\right)=\left|\log \left(\alpha^{\prime}, \beta^{\prime} ; O, P\right)\right| \\
=\left|\log \frac{\left(\alpha^{\prime}-0\right)\left(\beta^{\prime}-P^{\prime}\right)}{\left(\beta^{\prime}-0\right)\left(\alpha^{\prime}-\beta^{\prime}\right)}\right|=-\log \frac{\alpha^{\prime}\left(\beta^{\prime}-P^{\prime}\right)}{\beta^{\prime}\left(\alpha^{\prime}-P^{\prime}\right)},
\end{gathered}
$$

or $\log \frac{\alpha^{\prime}\left(\beta^{\prime}-P^{\prime}\right)}{\beta^{\prime}\left(\alpha^{\prime}-P^{\prime}\right)}=-r$, or $\frac{\alpha^{\prime}\left(\beta^{\prime}-P^{\prime}\right)}{\beta^{\prime}\left(\alpha^{\prime}-P^{\prime}\right)}=e^{-r}$.

Theorem 59.2.I (continued 3)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Solving for P^{\prime} we get $P^{\prime}=\frac{\alpha^{\prime} \beta^{\prime}\left(e^{-r}-1\right)}{\beta^{\prime} e^{-r}-\alpha^{\prime}}$.
Therefore, since $\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right|=1$,

$$
\left|P^{\prime}\right|=\frac{\left|\alpha^{\prime} \beta^{\prime}\right|\left|e^{-r}-1\right|}{\left|\beta^{\prime} e^{-r}-\alpha^{\prime}\right|}=\frac{\left|\alpha^{\prime} \beta^{\prime}\right|\left|e^{-r}-1\right|}{\left|\alpha^{\prime}\right|\left|\frac{\beta^{\prime}}{\alpha^{\prime}} e^{-r}-1\right|}=\frac{\left|e^{-r}-1\right|}{\left|\frac{\beta^{\prime}}{\alpha^{\prime}} e^{-r}-1\right|} .
$$

Now the p-line through O and P^{\prime} is a diameter of ω, so α^{\prime} and β^{\prime} are on opposite ends of a diameter of the unit circle and hence are of the form $\alpha^{\prime}=e^{i \theta}$ and $\beta^{\prime}=e^{i(\theta+\pi)}$ for some θ. So $\beta^{\prime} / \alpha^{\prime}=e^{i(\theta+\pi)} / e^{i \theta}=e^{i \pi}=-1$ So we have $\left|P^{\prime}\right|=\frac{\left|e^{-r}-1\right|}{e^{-r}+1}$, a constant. So P^{\prime} is of a constant modulus and the locus of all such P^{\prime} form a Euclidean circle with center O.

Theorem 59.2.I (continued 3)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to the family of p-lines which pass through A.

Proof (continued). Solving for P^{\prime} we get $P^{\prime}=\frac{\alpha^{\prime} \beta^{\prime}\left(e^{-r}-1\right)}{\beta^{\prime} e^{-r}-\alpha^{\prime}}$.
Therefore, since $\left|\alpha^{\prime}\right|=\left|\beta^{\prime}\right|=1$,

$$
\left|P^{\prime}\right|=\frac{\left|\alpha^{\prime} \beta^{\prime}\right|\left|e^{-r}-1\right|}{\left|\beta^{\prime} e^{-r}-\alpha^{\prime}\right|}=\frac{\left|\alpha^{\prime} \beta^{\prime}\right|\left|e^{-r}-1\right|}{\left|\alpha^{\prime}\right|\left|\frac{\beta^{\prime}}{\alpha^{\prime}} e^{-r}-1\right|}=\frac{\left|e^{-r}-1\right|}{\left|\frac{\beta^{\prime}}{\alpha^{\prime}} e^{-r}-1\right|} .
$$

Now the p-line through O and P^{\prime} is a diameter of ω, so α^{\prime} and β^{\prime} are on opposite ends of a diameter of the unit circle and hence are of the form $\alpha^{\prime}=e^{i \theta}$ and $\beta^{\prime}=e^{i(\theta+\pi)}$ for some θ. So $\beta^{\prime} / \alpha^{\prime}=e^{i(\theta+\pi)} / e^{i \theta}=e^{i \pi}=-1$. So we have $\left|P^{\prime}\right|=\frac{\left|e^{-r}-1\right|}{e^{-r}+1}$, a constant. So P^{\prime} is of a constant modulus and the locus of all such P^{\prime} form a Euclidean circle with center O.

Theorem 59.2.I (continued 4)

Proof (continued). This circle is orthogonal to any p-line through O (since all such p-lines are diameters of ω). Now inversion with respect to \mathscr{D} maps every p-line through O to a p-line through A (and all p-lines through A are images of p-lines through O) and maps the Euclidean circle $\left|P^{\prime}\right|=\left|e^{-r}-1\right| /\left(e^{-r}+1\right)$ to a Euclidean circle containing point P, as claimed. Since inversion preserves the sizes of angles (by Theorem 22.2), then we have that every p-line through A is orthogonal to the p-circle centered at A, as claimed.

Figure 59.2 modified

Theorem 59.2.II

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof. Let m and n be two horocycles
tangent to ω at point β (see Figure 59.3).
Suppose that a p-line through β meets ω
again at the point α, and intersects m at the
p-point A and intersects n at the p-point B.
By Exercise 57.11, inversion is a conjugate
Möbius transformation. By Exercise 57.10,
p-lengths are unchanged by a conjugate
Möbius transformation.

Theorem 59.2.II

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof. Let m and n be two horocycles tangent to ω at point β (see Figure 59.3). Suppose that a p-line through β meets ω again at the point α, and intersects m at the p-point A and intersects n at the p-point B. By Exercise 57.11, inversion is a conjugate Möbius transformation. By Exercise 57.10, p-lengths are unchanged by a conjugate Möbius transformation.

Figure 59.3

Theorem 59.2.II

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof. Let m and n be two horocycles tangent to ω at point β (see Figure 59.3). Suppose that a p-line through β meets ω again at the point α, and intersects m at the p-point A and intersects n at the p-point B. By Exercise 57.11, inversion is a conjugate Möbius transformation. By Exercise 57.10, p-lengths are unchanged by a conjugate Möbius transformation.

Figure 59.3

Theorem 59.2.II (continued 1)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof (continued). Next, we invert the
configuration given in Figure 59.3 about a
circle with center β (see Figure 59.4).
The circles ω, m, and n invert to parallel lines
$\omega^{\prime}, m^{\prime}$, and n^{\prime}, and the p-line $A B$ inverts
into a line $\alpha^{\prime} B^{\prime} A^{\prime}$, where α^{\prime} is the point
where it intersects $\omega^{\prime}, B^{\prime}$ is the point where
it intersects n^{\prime}, and A^{\prime} is the point where it
intersects m^{\prime}.

Theorem 59.2.II (continued 1)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4).
The circles ω, m, and n invert to parallel lines
$\omega^{\prime}, m^{\prime}$, and n^{\prime}, and the p-line $A B$ inverts
into a line $\alpha^{\prime} B^{\prime} A^{\prime}$, where α^{\prime} is the point
where it intersects $\omega^{\prime}, B^{\prime}$ is the point where it intersects n^{\prime}, and A^{\prime} is the point where it intersects m^{\prime}. This inversion maps β to
∞ in \mathbb{C}_{∞}. The cross-ratio $(\alpha, \beta ; A, B)$ has under inversion become the cross-ratio $\left(\alpha^{\prime}, \infty ; A^{\prime}, B^{\prime}\right)=\left(\alpha^{\prime}-A^{\prime}\right) /\left(\alpha^{\prime}-B^{\prime}\right)$.

Theorem 59.2.II (continued 1)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4).
The circles ω, m, and n invert to parallel lines $\omega^{\prime}, m^{\prime}$, and n^{\prime}, and the p-line $A B$ inverts into a line $\alpha^{\prime} B^{\prime} A^{\prime}$, where α^{\prime} is the point where it intersects $\omega^{\prime}, B^{\prime}$ is the point where it intersects n^{\prime}, and A^{\prime} is the point where it intersects m^{\prime}. This inversion maps β to

Figure 59.4 ∞ in \mathbb{C}_{∞}. The cross-ratio $(\alpha, \beta ; A, B)$ has under inversion become the cross-ratio $\left(\alpha^{\prime}, \infty ; A^{\prime}, B^{\prime}\right)=\left(\alpha^{\prime}-A^{\prime}\right) /\left(\alpha^{\prime}-B^{\prime}\right)$.

Theorem 59.2.II (continued 1)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof (continued). Next, we invert the configuration given in Figure 59.3 about a circle with center β (see Figure 59.4).
The circles ω, m, and n invert to parallel lines $\omega^{\prime}, m^{\prime}$, and n^{\prime}, and the p-line $A B$ inverts into a line $\alpha^{\prime} B^{\prime} A^{\prime}$, where α^{\prime} is the point where it intersects $\omega^{\prime}, B^{\prime}$ is the point where it intersects n^{\prime}, and A^{\prime} is the point where it intersects m^{\prime}. This inversion maps β to

Figure 59.4 ∞ in \mathbb{C}_{∞}. The cross-ratio $(\alpha, \beta ; A, B)$ has under inversion become the cross-ratio $\left(\alpha^{\prime}, \infty ; A^{\prime}, B^{\prime}\right)=\left(\alpha^{\prime}-A^{\prime}\right) /\left(\alpha^{\prime}-B^{\prime}\right)$.

Theorem 59.2.II (continued 2)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut off equal p-distances on the p-lines through β.

Proof (continued). By Theorem 58.B, $d(A, B)=(\alpha, \beta ; A, B)=\left(\alpha^{\prime}, \infty ; A^{\prime}, B^{\prime}\right)$. But for parallel lines $\alpha-A^{\prime}$ is constant and $\alpha^{\prime}-B^{\prime}$ is constant, so

$$
d(A, B)=\left(\alpha^{\prime}, \infty ; A^{\prime}, B^{\prime}\right)=\left(\alpha^{\prime}-A^{\prime}\right) /\left(\alpha^{\prime}-B^{\prime}\right)
$$

is constant. Hence $d(A, B)$ is independent of the particular p-line through β which cuts A and B on the given horocycles, as claimed.

Figure 59.4

