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Theorem 59.1

Theorem 59.1

Theorem 59.1. Two p-triangles are p-congruent if the three angles of the
one are respectively equal to the three angles of the other.

Proof. In Figure 59.1, suppose that <)A = <)A′, <)B = <)B ′, <)C = <)C ′.
ASSUME that the p-triangles ABC and A′B ′C ′ are not p-congruent.
Then some corresponding pair of sides are not equal, say
d(A,B) 6= d(A′,B ′). We may assume, without loss of generality, that
d(A,B) > d(A′,B ′). On AB and AC mark off lengths equal to A′B ′ and
A′C ′, respectively (see Note 58B). Then label the endpoints on AB and
AC as D and E , respectively.

Figure 59.1
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Theorem 59.1

Theorem 59.1 (continued 1)

Proof (continued).

Figure 59.1

Then D lies in the segment AB since d(A,B) > d(A′,B ′) by hypothesis.
But point E may coincide with point C , or it may lie in AC extended, or it
may lie in segment AC . If E coincides with C , then by Side-Angle-Side
(Theorem 57.1) the triangles ADC and A′B ′C ′ are congruent. But then
angle ADC = angle A′B ′ = angle ABC , in CONTRADICTION to
Theorem 58.2 which implies that angle ADC > angle ABC . Hence E
cannot coincide with C .
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Theorem 59.1

Theorem 59.1 (continued 2)

Proof (continued).

Figure 59.1

If E lies in AC extended then again triangles ADE and A′B ′C ′ are
congruent by SAS (Theorem 57.1), and angle AED = angle A′C ′B ′ =
angle ACB. Again, this CONTRADICTS Theorem 58.2 which implies
angle ACB > angle AED. Hence E cannot lie in AC extended. Therefore
E must lie between A and C , as shown in Figure 59.1.
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Theorem 59.1

Theorem 59.1 (continued 3)

Proof (continued).

Figure 59.1

But if we consider the quadrilateral BCED, the sum of the angles is 2π
(because supplemental angles in the quadrilateral). But a quadrilateral can
be divided into two triangles, so the Theorem 58.1 the angle sum of a
quadrilateral must be less than 2π, another CONTRADICTION.

Since
every possible location of point E leads to a contradiction, then our
original assumption that p-triangles ABC and A′B ′C ′ are not p-congruent
is false. That is, p-triangles ABC and A′B ′C ′ are p-congruent, as
claimed.
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Theorem 59.2.I

Theorem 59.2.I

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

Proof. The p-lines through A all pass
through the fixed point A′, where A′

is the inverse of A in ω by Theorem 20.2 in
Chapter II, “Circles.” Let P be a point on
the p-circle centered at A. Let C be the
p-line through P and A. Then C passes
through A′, since inversion with respect to ω
interchanges A and A′ and maps C to itself.
With α and β as the points of intersection of C and ω, we have by the
definition of a p-circle and metric d that | log(α, β;A,P)| = r .

Figure 59.2
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Theorem 59.2.I

Theorem 59.2.I (continued 1)

Proof (continued).

Figure 59.2 modified

Now consider a circle D with center
A′ which is orthogonal to ω (see
Figure 59.2 modified). If we invert
with respect to D , then ω is
mapped to itself and the inside of ω
is mapped to itself (these claims follow
from Exercise 20.2), and A is mapped to
O (the center of ω) by Theorem 23.3
(maybe). The circle C is mapped to the
line OP ′ where P ′ is the inverse of P with respect to D (since two points
determine a p-line). Let the diameter OP ′ of ω intersect ω at points α′

and β′ (and so these are inverses of α and β with respect to D).
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Theorem 59.2.I

Theorem 59.2.I (continued 2)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

Proof (continued). Now inversion with respect to D is a conjugate
Möbius transformation, but by Exercise 57.10 we have that the
cross-ratios (α, β, A,P) and (α′, β′,O,P ′) are equal. Hence

d(O,P ′) = | log(α′, β′;O,P ′)| = | log(α, β, A,P)| = d(A,P) = r .

Recall that (α′, β′,O,P ′) is real and between 0 and 1, so this implies:

r = d(O,P ′) = | log(α′, β′;O,P)|

=

∣∣∣∣log
(α′ − 0)(β′ − P ′)

(β′ − 0)(α′ − β′)

∣∣∣∣ = − log
α′(β′ − P ′)

β′(α′ − P ′)
,

or log
α′(β′ − P ′)

β′(α′ − P ′)
= −r , or

α′(β′ − P ′)

β′(α′ − P ′)
= e−r .
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Theorem 59.2.I

Theorem 59.2.I (continued 3)

Theorem 59.2.I. A p-circle, center A is a Euclidean circle orthogonal to
the family of p-lines which pass through A.

Proof (continued). Solving for P ′ we get P ′ =
α′β′(e−r − 1)

β′e−r − α′
.

Therefore, since |α′| = |β′| = 1,

|P ′| = |α′β′||e−r − 1|
|β′e−r − α′|

=
|α′β′||e−r − 1|

|α′|
∣∣∣β′

α′ e−r − 1
∣∣∣ =

|e−r − 1|∣∣∣β′

α′ e−r − 1
∣∣∣ .

Now the p-line through O and P ′ is a diameter of ω, so α′ and β′ are on
opposite ends of a diameter of the unit circle and hence are of the form
α′ = e iθ and β′ = e i(θ+π) for some θ. So β′/α′ = e i(θ+π)/e iθ = e iπ = −1.

So we have |P ′| = |e−r − 1|
e−r + 1

, a constant. So P ′ is of a constant modulus

and the locus of all such P ′ form a Euclidean circle with center O.
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Theorem 59.2.I

Theorem 59.2.I (continued 4)

Proof (continued). This circle is orthogonal to any p-line through O
(since all such p-lines are diameters of ω). Now inversion with respect to
D maps every p-line through O to a p-line through A (and all p-lines
through A are images of p-lines through O) and maps the Euclidean circle
|P ′| = |e−r − 1|/(e−r + 1) to a Euclidean circle containing point P, as
claimed. Since inversion preserves the sizes of angles (by Theorem 22.2),
then we have that every p-line through A is orthogonal to the p-circle
centered at A, as claimed.

Figure 59.2 modified
() Real Analysis December 31, 2021 11 / 14



Theorem 59.2.II

Theorem 59.2.II

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut
off equal p-distances on the p-lines through β.

Proof. Let m and n be two horocycles
tangent to ω at point β (see Figure 59.3).
Suppose that a p-line through β meets ω
again at the point α, and intersects m at the
p-point A and intersects n at the p-point B.
By Exercise 57.11, inversion is a conjugate
Möbius transformation. By Exercise 57.10,
p-lengths are unchanged by a conjugate
Möbius transformation.

Figure 59.3
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Möbius transformation. By Exercise 57.10,
p-lengths are unchanged by a conjugate
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Theorem 59.2.II

Theorem 59.2.II (continued 1)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut
off equal p-distances on the p-lines through β.

Proof (continued). Next, we invert the
configuration given in Figure 59.3 about a
circle with center β (see Figure 59.4).
The circles ω, m, and n invert to parallel lines
ω′, m′, and n′, and the p-line AB inverts
into a line α′B ′A′, where α′ is the point
where it intersects ω′, B ′ is the point where
it intersects n′, and A′ is the point where it
intersects m′.

This inversion maps β to
∞ in C∞. The cross-ratio (α, β;A,B) has under inversion become the
cross-ratio (α′,∞;A′,B ′) = (α′ − A′)/(α′ − B ′).

Figure 59.4
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Theorem 59.2.II
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Theorem 59.2.II

Theorem 59.2.II (continued 2)

Theorem 59.2.I. Two horocycles tangent to ω at the same point β cut
off equal p-distances on the p-lines through β.

Proof (continued). By Theorem 58.B,
d(A,B) = (α, β;A,B) = (α′,∞;A′,B ′). But for parallel lines α− A′ is
constant and α′ − B ′ is constant, so

d(A,B) = (α′,∞;A′,B ′) = (α′ − A′)/(α′ − B ′)

is constant. Hence d(A,B) is independent of the particular p-line through
β which cuts A and B on the given horocycles, as claimed.

Figure 59.4
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