Theorem 1.7.1 # Theorem 1.7.1 **Theorem 1.7.1.** There exists at least one point. **Proof.** By A.6 there exists at least one line ℓ . By A.4, line ℓ contains at least three points. Hence there is at least one point, as claimed. October 23, 2021 3 / 17 Foundations of Geometry Theorem 1.7.3 **Theorem 1.7.3.** Two points determine exactly one line. **Proof.** Let P_1 and P_2 be two points. By A.1, there is a line ℓ containing both P_1 and P_2 . By A.2, there is not another line containing both P_1 and P_2 , so ℓ is the exactly one line containing these two points. ### Foundations of Geometry ### Chapter 1. The Axiomatic Method 1.7. Finite Geometries—Proofs of Theorems Foundations of Geometry October 23, 2021 1 / 1 Theorem 1.7.2 ### Theorem 1.7.2 **Theorem 1.7.2.** If ℓ_1 and ℓ_2 are any two lines, there is at most one point which lies on both ℓ_1 and ℓ_2 . **Proof.** Let ℓ_1 and ℓ_2 be any two lines. ASSUME that the two points P_1 and P_2 are on both ℓ_1 and ℓ_2 . By A.2 there is at most one line containing any given two points, so this is a CONTRADICTION. So the assumption of two point shared by ℓ_1 and ℓ_2 is false, and hence ℓ_1 and ℓ_2 can share at most one point, as claimed. Foundations of Geometry October 23, 2021 4 / 17 () Foundations of Geometry October 23, 2021 5 / 17 #### Theorem 1.7.4 **Theorem 1.7.4.** Two lines have exactly one point in common. **Proof.** Let ℓ_1 and ℓ_2 be lines. By A.3, there is a point P which lies on both ℓ_1 and ℓ_2 . By Theorem 1.7.2, there is at most one point which lies on both ℓ_1 and ℓ_2 . Therefore, there is exactly one point common to ℓ_1 and ℓ_2 , as claimed. Foundations of Geometry October 23, 2021 $6 \ / \ 1$ Theorem 1.7.6 ### Theorem 1.7.6 **Theorem 1.7.6.** Every point lies on at least three lines. **Proof.** Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line ℓ which does not pass through point P. By A.4, line ℓ contains at least three points, say P_1 , P_2 , and P_3 (notice that P is distinct from P_1 , P_2 , and P_3). By Theorem 1.7.3, each of these points determines a unique line which also contains point P, say line ℓ_1 , ℓ_2 , and ℓ_3 , respectively. Notice that the lines ℓ_1 , ℓ_2 , and ℓ_3 are distinct, for if two of the lines coincided then the common line would share two points with line ℓ (for example, if ℓ_1 and ℓ_2 are the same line then this line shares the points P_1 and P_2 with line ℓ), contradicting Theorem 1.7.4. So the three lines ℓ_1 , ℓ_2 , and ℓ_3 are distinct lines containing point P, as claimed. ### Theorem 1.7.5 **Theorem 1.7.5.** If P is any point, there is at least one line which does not pass through P. **Proof.** By A.6, there exists a line ℓ . If this line does not pass through P, then we are done. So without loss of generality, we can assume that ℓ passes through P. By A.4, line ℓ contains at least three points, so there is another point P' on line ℓ . By A.5, there is at least one point P'' which does not lie on ℓ . By Theorem 1.7.3, there is a unique line ℓ' which contains P' and P''. Notice that ℓ and ℓ' are different lines, since P'' lies on ℓ' but P'' does not lie on ℓ . By Theorem 1.7.4, ℓ and ℓ' have exactly one point in common, so this point must be point P'. Since point P lies on ℓ , then point P cannot also lie on ℓ' . Therefore ℓ' is a line which does not contain point P, as claimed. () Foundations of Geometry October 23, 2021 7 / 17 I heorem ### Theorem 1.7.7 **Theorem 1.7.7.** If there exists one line which contains exactly n points, then every line contains exactly n points. **Proof.** Let ℓ be a line containing exactly n points, P_1, P_2, \ldots, P_n . Let ℓ' be a line other than line ℓ (which exists by Theorems 1.7.1 and 1.7.6). By Theorem 1.7.4, ℓ and ℓ' have exactly one point in common; we take this point to be P_1 , without loss of generality. By A.4, ℓ' contains some point P_2' distinct from P_1 . Notice that P_2' is distinct from P_2, P_3, \ldots, P_n by Theorem 1.7.4. See Figure 1.6 below. Foundations of Geometry October 23, 2021 8 / 17 () Foundations of Geometry October 23, 2021 9 / 17 # Theorem 1.7.7 (continued 1) Proof (continued). By Theorem 1.7.3, there is a unique line, say ℓ_2 , containing both P_2 and P_2' . By A.4, there is a third point Q, distinct from P_2 and P_2' , belonging to ℓ_2 . By Theorem 1.7.4, point Q is distinct from P_1, P_2, \ldots, P_n (consider lines ℓ and ℓ_2). By Theorem 1.7.3, Q determined a unique line with each of the points P_3, P_4, \ldots, P_n , say $\ell_3, \ell_4, \ldots, \ell_n$, respectively. Foundations of Geometry # Theorem 1.7.7 (continued 3) Proof (continued). We now show that ℓ' contains no more than n points. ASSUME to the contrary that ℓ' contains another point, say P'_{n+1} . By Theorem 1.7.3 there is a unique line ℓ_{n+1} containing Q and P'_{n+1} and, again, by Theorem 1.7.4 this line is distinct from $\ell_1, \ell_2, \dots, \ell_n$ and distinct from ℓ . # Theorem 1.7.7 (continued 2) Proof (continued). By Theorem 1.7.4, line $\ell_3, \ell_4, \dots, \ell_n$ are distinct and are distinct from ℓ . Also by Theorem 1.7.4, lines $\ell_3, \ell_4, \dots, \ell_n$ intersect ℓ' in unique points P_1', P_2', \dots, P_n' , respectively, distinct and also distinct from $P_1' = P_1$ and P_2' by Theorem 1.7.2. Hence line ℓ' contains at least n points. Foundations of Geometry October 23, 2021 11 / 17 # Theorem 1.7.7 (continued 4) Proof (continued). By Theorem 1.7.4, there is a unique point common to ℓ_{n+1} and ℓ , which we denote P_{n+1} , and which is distinct from P_1, P_2, \dots, P_n by Theorem 1.7.3. But then line ℓ has n+1 points, a CONTRADICTION. So the assumption that ℓ' has more than n points is false. Since ℓ' is an arbitrary line distinct from line ℓ , the claim follows. October 23, 2021 10 / 17 #### Theorem 1.7.8 **Theorem 1.7.8.** If there exists one line which contains exactly *n* points, then exactly *n* lines pass through every point. **Proof.** Let *P* be an arbitrary point. By Theorem 1.7.5 there is at least one line ℓ which does not pass through P. By Theorem 1.7.7, ℓ contains exactly *n* points, say P_1, P_2, \ldots, P_n . By Theorem 1.7.3. P and each of P_1, P_2, \dots, P_n determines a line $\ell_1, \ell_2, \dots, \ell_n$ and these lines are distinct by Theorem 1.7.4. Therefore there are at least n lines passing through P. October 23, 2021 ### Theorem 1.7.9 **Theorem 1.7.9.** If there exists one line which contains exactly *n* points, then the system contains exactly $n^2 - n + 1$ points. Foundations of Geometry **Proof.** By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly n lines. $\ell_1, \ell_2, \dots, \ell_n$ passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P: so if we count all the distinct points on lines $\ell_1, \ell_2, \dots, \ell_n$ then we have the total number of points. By Theorem 1.7.7 every line contains exactly *n* points. So each of $\ell_1, \ell_2, \dots, \ell_n$ contains n-1 points besides point P. Therefore, there are a total of $n(n-1)+1=n^2-n+1$ points, as claimed. # Theorem 1.7.8 (continued) **Theorem 1.7.8.** If there exists one line which contains exactly *n* points. then exactly n lines pass through every point. **Proof (continued).** Next, ASSUME there is at least one additional line, ℓ_{n+1} , passing through P. By Theorem 1.7.4, ℓ_{n+1} must intersect ℓ is a unique point, say P_{n+1} , so that P_{n+1} is distinct from P_1, P_2, \ldots, P_n . But then ℓ contains n+1 points, a CONTRADICTION. So the assumption that there are more than n lines passing through P is false, and hence there are exactly n line through point P. Since P is an arbitrary point, the claim follows. > Foundations of Geometry October 23, 2021 ## Theorem 1.7.10 **Theorem 1.7.10.** If there exists one line which contains exactly n points, then the system contains exactly $n^2 - n + 1$ lines. **Proof.** By A.6 there exists at least one line ℓ , and by Theorem 1.7.7 line ℓ contains exactly *n* points, say P_1, P_2, \ldots, P_n . By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except ℓ itself, passes through exactly one of the points P_1, P_2, \dots, P_n . By Theorem 1.7.8 exactly *n* lines (including line ℓ) pass through each of the points P_1, P_2, \dots, P_n . So there is a total of $n(n-1) + 1 = n^2 - n + 1$ lines, as claimed.