Foundations of Geometry

Chapter 1. The Axiomatic Method

1.7. Finite Geometries—Proofs of Theorems

Table of contents

(1) Theorem 1.7.1
(2) Theorem 1.7.2
(3) Theorem 1.7.3
(4) Theorem 1.7.4
(5) Theorem 1.7.5
(6) Theorem 1.7.6
(7) Theorem 1.7.7
(8) Theorem 1.7.8
(9) Theorem 1.7.9
(10) Theorem 1.7.10

Theorem 1.7.1

Theorem 1.7.1. There exists at least one point.

Proof. By A. 6 there exists at least one line ℓ. By A.4, line ℓ contains at least three points. Hence there is at least one point, as claimed.

Theorem 1.7.1

Theorem 1.7.1. There exists at least one point.

Proof. By A. 6 there exists at least one line ℓ. By A.4, line ℓ contains at least three points. Hence there is at least one point, as claimed.

Theorem 1.7.2

Theorem 1.7.2. If ℓ_{1} and ℓ_{2} are any two lines, there is at most one point which lies on both ℓ_{1} and ℓ_{2}.

Proof. Let ℓ_{1} and ℓ_{2} be any two lines. ASSUME that the two points P_{1} and P_{2} are on both ℓ_{1} and ℓ_{2}. By A. 2 there is at most one line containing any given two points, so this is a CONTRADICTION. So the assumption of two point shared by ℓ_{1} and ℓ_{2} is false, and hence ℓ_{1} and ℓ_{2} can share at most one point, as claimed.

Theorem 1.7.2

Theorem 1.7.2. If ℓ_{1} and ℓ_{2} are any two lines, there is at most one point which lies on both ℓ_{1} and ℓ_{2}.

Proof. Let ℓ_{1} and ℓ_{2} be any two lines. ASSUME that the two points P_{1} and P_{2} are on both ℓ_{1} and ℓ_{2}. By A. 2 there is at most one line containing any given two points, so this is a CONTRADICTION. So the assumption of two point shared by ℓ_{1} and ℓ_{2} is false, and hence ℓ_{1} and ℓ_{2} can share at most one point, as claimed.

Theorem 1.7.3

Theorem 1.7.3. Two points determine exactly one line.

Proof. Let P_{1} and P_{2} be two points. By A.1, there is a line ℓ containing both P_{1} and P_{2}. By A.2, there is not another line containing both P_{1} and P_{2}, so ℓ is the exactly one line containing these two points.

Theorem 1.7.3

Theorem 1.7.3. Two points determine exactly one line.

Proof. Let P_{1} and P_{2} be two points. By A.1, there is a line ℓ containing both P_{1} and P_{2}. By A.2, there is not another line containing both P_{1} and P_{2}, so ℓ is the exactly one line containing these two points.

Theorem 1.7.4

Theorem 1.7.4. Two lines have exactly one point in common.

Proof. Let ℓ_{1} and ℓ_{2} be lines. By A.3, there is a point P which lies on both ℓ_{1} and ℓ_{2}. By Theorem 1.7.2, there is at most one point which lies on both ℓ_{1} and ℓ_{2}. Therefore, there is exactly one point common to ℓ_{1} and ℓ_{2}, as claimed.

Theorem 1.7.4

Theorem 1.7.4. Two lines have exactly one point in common.

Proof. Let ℓ_{1} and ℓ_{2} be lines. By A.3, there is a point P which lies on both ℓ_{1} and ℓ_{2}. By Theorem 1.7.2, there is at most one point which lies on both ℓ_{1} and ℓ_{2}. Therefore, there is exactly one point common to ℓ_{1} and ℓ_{2}, as claimed.

Theorem 1.7.5

Theorem 1.7.5. If P is any point, there is at least one line which does not pass through P.

Proof. By A.6, there exists a line ℓ. If this line does not pass through P, then we are done. So without loss of generality, we can assume that ℓ passes through P.

Theorem 1.7.5

Theorem 1.7.5. If P is any point, there is at least one line which does not pass through P.

Proof. By A.6, there exists a line ℓ. If this line does not pass through P, then we are done. So without loss of generality, we can assume that ℓ passes through P. By A.4, line ℓ contains at least three points, so there is another point P^{\prime} on line ℓ. By A.5, there is at least one point $P^{\prime \prime}$ which does not lie on ℓ. By Theorem 1.7.3, there is a unique line ℓ^{\prime} which contains P^{\prime} and $P^{\prime \prime}$. Notice that ℓ and ℓ^{\prime} are different lines, since $P^{\prime \prime}$ lies on ℓ^{\prime} but $P^{\prime \prime}$ does not lie on ℓ.

Theorem 1.7.5

Theorem 1.7.5. If P is any point, there is at least one line which does not pass through P.

Proof. By A.6, there exists a line ℓ. If this line does not pass through P, then we are done. So without loss of generality, we can assume that ℓ passes through P. By A.4, line ℓ contains at least three points, so there is another point P^{\prime} on line ℓ. By A.5, there is at least one point $P^{\prime \prime}$ which does not lie on ℓ. By Theorem 1.7.3, there is a unique line ℓ^{\prime} which contains P^{\prime} and $P^{\prime \prime}$. Notice that ℓ and ℓ^{\prime} are different lines, since $P^{\prime \prime}$ lies on ℓ^{\prime} but $P^{\prime \prime}$ does not lie on ℓ. By Theorem 1.7.4, ℓ and ℓ^{\prime} have exactly one point in common, so this point must be point P^{\prime}. Since point P lies on ℓ, then point P cannot also lie on ℓ^{\prime}. Therefore ℓ^{\prime} is a line which does not contain point P, as claimed.

Theorem 1.7.5

Theorem 1.7.5. If P is any point, there is at least one line which does not pass through P.

Proof. By A.6, there exists a line ℓ. If this line does not pass through P, then we are done. So without loss of generality, we can assume that ℓ passes through P. By A.4, line ℓ contains at least three points, so there is another point P^{\prime} on line ℓ. By A.5, there is at least one point $P^{\prime \prime}$ which does not lie on ℓ. By Theorem 1.7.3, there is a unique line ℓ^{\prime} which contains P^{\prime} and $P^{\prime \prime}$. Notice that ℓ and ℓ^{\prime} are different lines, since $P^{\prime \prime}$ lies on ℓ^{\prime} but $P^{\prime \prime}$ does not lie on ℓ. By Theorem 1.7.4, ℓ and ℓ^{\prime} have exactly one point in common, so this point must be point P^{\prime}. Since point P lies on ℓ, then point P cannot also lie on ℓ^{\prime}. Therefore ℓ^{\prime} is a line which does not contain point P, as claimed.

Theorem 1.7.6

Theorem 1.7.6. Every point lies on at least three lines.
Proof. Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line ℓ which does not pass through point P. By A.4, line ℓ contains at least three points, say P_{1}, P_{2}, and P_{3} (notice that P is distinct from P_{1}, P_{2}, and P_{3}).

Theorem 1.7.6

Theorem 1.7.6. Every point lies on at least three lines.
Proof. Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line ℓ which does not pass through point P. By A.4, line ℓ contains at least three points, say P_{1}, P_{2}, and P_{3} (notice that P is distinct from P_{1}, P_{2}, and P_{3}). By Theorem 1.7.3, each of these points determines a unique line which also contains point P, say line ℓ_{1}, ℓ_{2}, and ℓ_{3}, respectively. Notice that the lines ℓ_{1}, ℓ_{2}, and ℓ_{3} are distinct, for if two of the lines coincided then the common line would share two points with line ℓ (for example, if ℓ_{1} and ℓ_{2} are the same line then this line shares the points P_{1} and P_{2} with line ℓ), contradicting Theorem 1.7.4. So the three lines ℓ_{1}, ℓ_{2}, and ℓ_{3} are distinct lines containing point P, as claimed.

Theorem 1.7.6

Theorem 1.7.6. Every point lies on at least three lines.
Proof. Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line ℓ which does not pass through point P. By A.4, line ℓ contains at least three points, say P_{1}, P_{2}, and P_{3} (notice that P is distinct from P_{1}, P_{2}, and P_{3}). By Theorem 1.7.3, each of these points determines a unique line which also contains point P, say line ℓ_{1}, ℓ_{2}, and ℓ_{3}, respectively. Notice that the lines ℓ_{1}, ℓ_{2}, and ℓ_{3} are distinct, for if two of the lines coincided then the common line would share two points with line ℓ (for example, if ℓ_{1} and ℓ_{2} are the same line then this line shares the points P_{1} and P_{2} with line ℓ), contradicting Theorem 1.7.4. So the three lines ℓ_{1}, ℓ_{2}, and ℓ_{3} are distinct lines containing point P, as claimed.

Theorem 1.7.7

Theorem 1.7.7. If there exists one line which contains exactly n points, then every line contains exactly n points.

Proof. Let ℓ be a line containing exactly n points, $P_{1}, P_{2}, \ldots, P_{n}$. Let ℓ^{\prime} be a line other than line ℓ (which exists by Theorems 1.7.1 and 1.7.6). By Theorem 1.7.4, ℓ and ℓ^{\prime} have exactly one point in common; we take this point to be P_{1}, without loss of generality. By A.4, ℓ^{\prime} contains some point P_{2}^{\prime} distinct from P_{1}. Notice that P_{2}^{\prime} is distinct from $P_{2}, P_{3}, \ldots, P_{n}$ by Theorem 1.7.4. See Figure 1.6 below.

Theorem 1.7.7

Theorem 1.7.7. If there exists one line which contains exactly n points, then every line contains exactly n points.

Proof. Let ℓ be a line containing exactly n points, $P_{1}, P_{2}, \ldots, P_{n}$. Let ℓ^{\prime} be a line other than line ℓ (which exists by Theorems 1.7.1 and 1.7.6). By Theorem 1.7.4, ℓ and ℓ^{\prime} have exactly one point in common; we take this point to be P_{1}, without loss of generality. By A.4, ℓ^{\prime} contains some point P_{2}^{\prime} distinct from P_{1}. Notice that P_{2}^{\prime} is distinct from $P_{2}, P_{3}, \ldots, P_{n}$ by Theorem 1.7.4. See Figure 1.6 below.

Theorem 1.7.7 (continued 1)

Proof (continued).

By Theorem 1.7.3, there is a unique line, say ℓ_{2}, containing both P_{2} and P_{2}^{\prime}. By A.4, there is a third point Q, distinct from P_{2} and P_{2}^{\prime}, belonging to ℓ_{2}. By Theorem 1.7.4, point Q is distinct from $P_{1}, P_{2}, \ldots, P_{n}$ (consider lines ℓ and ℓ_{2}). By Theorem 1.7.3, Q determined a unique line with each of the points $P_{3}, P_{4}, \ldots, P_{n}$, say $\ell_{3}, \ell_{4}, \ldots, \ell_{n}$, respectively.

Theorem 1.7.7 (continued 2)

Proof (continued).

By Theorem 1.7.4, line $\ell_{3}, \ell_{4}, \ldots, \ell_{n}$ are distinct and are distinct from ℓ. Also by Theorem 1.7.4, lines $\ell_{3}, \ell_{4}, \ldots, \ell_{n}$ intersect ℓ^{\prime} in unique points $P_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{n}^{\prime}$, respectively, distinct and also distinct from $P_{1}^{\prime}=P_{1}$ and P_{2}^{\prime} by Theorem 1.7.2. Hence line ℓ^{\prime} contains at least n points.

Theorem 1.7.7 (continued 3)

Proof (continued).

We now show that ℓ^{\prime} contains no more than n points. ASSUME to the contrary that ℓ^{\prime} contains another point, say P_{n+1}^{\prime}. By Theorem 1.7.3 there is a unique line ℓ_{n+1} containing Q and P_{n+1}^{\prime} and, again, by Theorem 1.7.4 this line is distinct from $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ and distinct from ℓ.

Theorem 1.7.7 (continued 4)

Proof (continued).

By Theorem 1.7.4, there is a unique point common to ℓ_{n+1} and ℓ, which we denote P_{n+1}, and which is distinct from $P_{1}, P_{2}, \ldots, P_{n}$ by Theorem 1.7.3. But then line ℓ has $n+1$ points, a CONTRADICTION. So the assumption that ℓ^{\prime} has more than n points is false. Since ℓ^{\prime} is an arbitrary line distinct from line ℓ, the claim follows.

Theorem 1.7.8

Theorem 1.7.8. If there exists one line which contains exactly n points, then exactly n lines pass through every point.

```
Proof. Let P be an arbitrary
point. By Theorem 1.7.5 there is at
least one line \ell which does not
pass through P. By Theorem 1.7.7,
\ell contains exactly n points,
say }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{},\ldots,\mp@subsup{P}{n}{}\mathrm{ . By
Theorem 1.7.3, P and each of
P},\mp@subsup{P}{2}{},\ldots,\mp@subsup{P}{n}{}\mathrm{ determines a
line \ell }\mp@subsup{\ell}{1}{},\mp@subsup{\ell}{2}{},\ldots,\mp@subsup{\ell}{n}{}\mathrm{ . and these
lines are distinct by Theorem 1.7.4.
Therefore there are at least n lines passing through P
```


Theorem 1.7.8

Theorem 1.7.8. If there exists one line which contains exactly n points, then exactly n lines pass through every point.

Proof. Let P be an arbitrary point. By Theorem 1.7.5 there is at least one line ℓ which does not pass through P. By Theorem 1.7.7, ℓ contains exactly n points, say $P_{1}, P_{2}, \ldots, P_{n}$. By Theorem 1.7.3, P and each of $P_{1}, P_{2}, \ldots, P_{n}$ determines a line $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$. and these
 lines are distinct by Theorem 1.7.4. Therefore there are at least n lines passing through P.

Theorem 1.7.8

Theorem 1.7.8. If there exists one line which contains exactly n points, then exactly n lines pass through every point.

Proof. Let P be an arbitrary point. By Theorem 1.7.5 there is at least one line ℓ which does not pass through P. By Theorem 1.7.7, ℓ contains exactly n points, say $P_{1}, P_{2}, \ldots, P_{n}$. By Theorem 1.7.3, P and each of $P_{1}, P_{2}, \ldots, P_{n}$ determines a line $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$. and these
 lines are distinct by Theorem 1.7.4. Therefore there are at least n lines passing through P.

Theorem 1.7.8 (continued)

Theorem 1.7.8. If there exists one line which contains exactly n points, then exactly n lines pass through every point.

Proof (continued). Next, ASSUME there is at least one additional line, ℓ_{n+1}, passing through P. By Theorem 1.7.4, ℓ_{n+1} must intersect ℓ is a unique point, say P_{n+1}, so that P_{n+1} is distinct from $P_{1}, P_{2}, \ldots, P_{n}$. But then ℓ contains $n+1$ points, a CONTRADICTION. So the
 assumption that there are more than n lines passing through P is false, and hence there are exactly n line through point P. Since P is an arbitrary point, the claim follows.

Theorem 1.7.9

Theorem 1.7.9. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ points.

Proof. By Theorem 1.7.1 there exists
at least one point P and by
Theorem 1.7.8 there are exactly n lines,
$\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ passing through P.
By Theorem 1.7.3 (two points
determine exactly one line), every point
in the system, except point P itself,
lies on exactly one line passing through
P; so if we count all the distinct
points on lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ then we
have the total number of points. By Theorem 1.7.7 every line contains exactly n points. So each of $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ contains $n-1$ points besides point P. Therefore, there are a total of $n(n-1)+1=n^{2}-n+1$ points, as claimed.

Theorem 1.7.9

Theorem 1.7.9. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ points.
Proof. By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly n lines, $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P; so if we count all the distinct points on lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ then we
 have the total number of points. By Theorem 1.7.7 every line contains exactly n points. So each of $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ contains $n-1$ points besides point P. Therefore, there are a total of $n(n-1)+1=n^{2}-n+1$ points, as claimed.

Theorem 1.7.9

Theorem 1.7.9. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ points.
Proof. By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly n lines, $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P; so if we count all the distinct points on lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ then we
 have the total number of points. By Theorem 1.7.7 every line contains exactly n points. So each of $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ contains $n-1$ points besides point P. Therefore, there are a total of $n(n-1)+1=n^{2}-n+1$ points, as claimed.

Theorem 1.7.10

Theorem 1.7.10. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ lines.

Proof. By A. 6 there exists at least one line ℓ, and by Theorem 1.7.7 line ℓ contains exactly n points, say $P_{1}, P_{2}, \ldots, P_{n}$. By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except ℓ itself, passes through exactly one of the points $P_{1}, P_{2}, \ldots, P_{n}$.

Theorem 1.7.10

Theorem 1.7.10. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ lines.

Proof. By A. 6 there exists at least one line ℓ, and by Theorem 1.7.7 line ℓ contains exactly n points, say $P_{1}, P_{2}, \ldots, P_{n}$. By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except ℓ itself, passes through exactly one of the points $P_{1}, P_{2}, \ldots, P_{n}$.

By Theorem 1.7.8 exactly n lines (including line ℓ) pass through each of the points $P_{1}, P_{2}, \ldots, P_{n}$. So there is a total of $n(n-1)+1=n^{2}-n+1$ lines, as claimed.

Theorem 1.7.10

Theorem 1.7.10. If there exists one line which contains exactly n points, then the system contains exactly $n^{2}-n+1$ lines.

Proof. By A. 6 there exists at least one line ℓ, and by Theorem 1.7.7 line ℓ contains exactly n points, say $P_{1}, P_{2}, \ldots, P_{n}$. By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except ℓ itself, passes through exactly one of the points $P_{1}, P_{2}, \ldots, P_{n}$.

By Theorem 1.7.8 exactly n lines (including line ℓ) pass through each of the points $P_{1}, P_{2}, \ldots, P_{n}$. So there is a total of $n(n-1)+1=n^{2}-n+1$ lines, as claimed.

