### Foundations of Geometry

#### **Chapter 1. The Axiomatic Method** 1.7. Finite Geometries—Proofs of Theorems



# Table of contents

- 1 Theorem 1.7.1
- 2 Theorem 1.7.2
- 3 Theorem 1.7.3
- 4 Theorem 1.7.4
- 5 Theorem 1.7.5
- 6 Theorem 1.7.6
- 7 Theorem 1.7.7
- **8** Theorem 1.7.8
  - 9 Theorem 1.7.9
- 10 Theorem 1.7.10

#### Theorem 1.7.1. There exists at least one point.

**Proof.** By A.6 there exists at least one line  $\ell$ . By A.4, line  $\ell$  contains at least three points. Hence there is at least one point, as claimed.

Theorem 1.7.1. There exists at least one point.

**Proof.** By A.6 there exists at least one line  $\ell$ . By A.4, line  $\ell$  contains at least three points. Hence there is at least one point, as claimed.

# **Theorem 1.7.2.** If $\ell_1$ and $\ell_2$ are any two lines, there is at most one point which lies on both $\ell_1$ and $\ell_2$ .

**Proof.** Let  $\ell_1$  and  $\ell_2$  be any two lines. ASSUME that the two points  $P_1$  and  $P_2$  are on both  $\ell_1$  and  $\ell_2$ . By A.2 there is at most one line containing any given two points, so this is a CONTRADICTION. So the assumption of two point shared by  $\ell_1$  and  $\ell_2$  is false, and hence  $\ell_1$  and  $\ell_2$  can share at most one point, as claimed.

**Theorem 1.7.2.** If  $\ell_1$  and  $\ell_2$  are any two lines, there is at most one point which lies on both  $\ell_1$  and  $\ell_2$ .

**Proof.** Let  $\ell_1$  and  $\ell_2$  be any two lines. ASSUME that the two points  $P_1$  and  $P_2$  are on both  $\ell_1$  and  $\ell_2$ . By A.2 there is at most one line containing any given two points, so this is a CONTRADICTION. So the assumption of two point shared by  $\ell_1$  and  $\ell_2$  is false, and hence  $\ell_1$  and  $\ell_2$  can share at most one point, as claimed.

#### Theorem 1.7.3. Two points determine exactly one line.

**Proof.** Let  $P_1$  and  $P_2$  be two points. By A.1, there is a line  $\ell$  containing both  $P_1$  and  $P_2$ . By A.2, there is not another line containing both  $P_1$  and  $P_2$ , so  $\ell$  is the exactly one line containing these two points.

Theorem 1.7.3. Two points determine exactly one line.

**Proof.** Let  $P_1$  and  $P_2$  be two points. By A.1, there is a line  $\ell$  containing both  $P_1$  and  $P_2$ . By A.2, there is not another line containing both  $P_1$  and  $P_2$ , so  $\ell$  is the exactly one line containing these two points.

#### Theorem 1.7.4. Two lines have exactly one point in common.

**Proof.** Let  $\ell_1$  and  $\ell_2$  be lines. By A.3, there is a point *P* which lies on both  $\ell_1$  and  $\ell_2$ . By Theorem 1.7.2, there is at most one point which lies on both  $\ell_1$  and  $\ell_2$ . Therefore, there is exactly one point common to  $\ell_1$  and  $\ell_2$ , as claimed.

Theorem 1.7.4. Two lines have exactly one point in common.

**Proof.** Let  $\ell_1$  and  $\ell_2$  be lines. By A.3, there is a point *P* which lies on both  $\ell_1$  and  $\ell_2$ . By Theorem 1.7.2, there is at most one point which lies on both  $\ell_1$  and  $\ell_2$ . Therefore, there is exactly one point common to  $\ell_1$  and  $\ell_2$ , as claimed.

# **Theorem 1.7.5.** If P is any point, there is at least one line which does not pass through P.

**Proof.** By A.6, there exists a line  $\ell$ . If this line does not pass through *P*, then we are done. So without loss of generality, we can assume that  $\ell$  passes through *P*.

**Theorem 1.7.5.** If P is any point, there is at least one line which does not pass through P.

**Proof.** By A.6, there exists a line  $\ell$ . If this line does not pass through P, then we are done. So without loss of generality, we can assume that  $\ell$  passes through P. By A.4, line  $\ell$  contains at least three points, so there is another point P' on line  $\ell$ . By A.5, there is at least one point P'' which does not lie on  $\ell$ . By Theorem 1.7.3, there is a unique line  $\ell'$  which contains P' and P''. Notice that  $\ell$  and  $\ell'$  are different lines, since P'' lies on  $\ell'$  but P'' does not lie on  $\ell$ .

**Theorem 1.7.5.** If P is any point, there is at least one line which does not pass through P.

**Proof.** By A.6, there exists a line  $\ell$ . If this line does not pass through P, then we are done. So without loss of generality, we can assume that  $\ell$  passes through P. By A.4, line  $\ell$  contains at least three points, so there is another point P' on line  $\ell$ . By A.5, there is at least one point P'' which does not lie on  $\ell$ . By Theorem 1.7.3, there is a unique line  $\ell'$  which contains P' and P''. Notice that  $\ell$  and  $\ell'$  are different lines, since P'' lies on  $\ell'$  but P'' does not lie on  $\ell$ . By Theorem 1.7.4,  $\ell$  and  $\ell'$  have exactly one point in common, so this point must be point P'. Since point P lies on  $\ell$ , then point P cannot also lie on  $\ell'$ . Therefore  $\ell'$  is a line which does not contain point P, as claimed.

**Theorem 1.7.5.** If P is any point, there is at least one line which does not pass through P.

**Proof.** By A.6, there exists a line  $\ell$ . If this line does not pass through P, then we are done. So without loss of generality, we can assume that  $\ell$  passes through P. By A.4, line  $\ell$  contains at least three points, so there is another point P' on line  $\ell$ . By A.5, there is at least one point P'' which does not lie on  $\ell$ . By Theorem 1.7.3, there is a unique line  $\ell'$  which contains P' and P''. Notice that  $\ell$  and  $\ell'$  are different lines, since P'' lies on  $\ell'$  but P'' does not lie on  $\ell$ . By Theorem 1.7.4,  $\ell$  and  $\ell'$  have exactly one point in common, so this point must be point P'. Since point P lies on  $\ell$ , then point P cannot also lie on  $\ell'$ . Therefore  $\ell'$  is a line which does not contain point P, as claimed.

#### Theorem 1.7.6. Every point lies on at least three lines.

**Proof.** Let *P* be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line  $\ell$  which does not pass through point *P*. By A.4, line  $\ell$  contains at least three points, say *P*<sub>1</sub>, *P*<sub>2</sub>, and *P*<sub>3</sub> (notice that *P* is distinct from *P*<sub>1</sub>, *P*<sub>2</sub>, and *P*<sub>3</sub>).

Theorem 1.7.6. Every point lies on at least three lines.

**Proof.** Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line  $\ell$  which does not pass through point P. By A.4, line  $\ell$  contains at least three points, say  $P_1$ ,  $P_2$ , and  $P_3$  (notice that P is distinct from  $P_1$ ,  $P_2$ , and  $P_3$ ). By Theorem 1.7.3, each of these points determines a unique line which also contains point  $P_{i}$ say line  $\ell_1, \ell_2$ , and  $\ell_3$ , respectively. Notice that the lines  $\ell_1, \ell_2$ , and  $\ell_3$  are distinct, for if two of the lines coincided then the common line would share two points with line  $\ell$  (for example, if  $\ell_1$  and  $\ell_2$  are the same line then this line shares the points  $P_1$  and  $P_2$  with line  $\ell$ ), contradicting Theorem 1.7.4. So the three lines  $\ell_1$ ,  $\ell_2$ , and  $\ell_3$  are distinct lines containing point P, as claimed.

**Theorem 1.7.6.** Every point lies on at least three lines.

**Proof.** Let P be an arbitrary point, which is known to exist by Theorem 1.7.1. By Theorem 1.7.5, there is at least one line  $\ell$  which does not pass through point P. By A.4, line  $\ell$  contains at least three points, say  $P_1$ ,  $P_2$ , and  $P_3$  (notice that P is distinct from  $P_1$ ,  $P_2$ , and  $P_3$ ). By Theorem 1.7.3, each of these points determines a unique line which also contains point P, say line  $\ell_1, \ell_2$ , and  $\ell_3$ , respectively. Notice that the lines  $\ell_1, \ell_2$ , and  $\ell_3$  are distinct, for if two of the lines coincided then the common line would share two points with line  $\ell$  (for example, if  $\ell_1$  and  $\ell_2$  are the same line then this line shares the points  $P_1$  and  $P_2$  with line  $\ell$ ), contradicting Theorem 1.7.4. So the three lines  $\ell_1$ ,  $\ell_2$ , and  $\ell_3$  are distinct lines containing point P, as claimed.

**Theorem 1.7.7.** If there exists one line which contains exactly n points, then every line contains exactly n points.

**Proof.** Let  $\ell$  be a line containing exactly *n* points,  $P_1, P_2, \ldots, P_n$ . Let  $\ell'$  be a line other than line  $\ell$  (which exists by Theorems 1.7.1 and 1.7.6). By Theorem 1.7.4,  $\ell$  and  $\ell'$  have exactly one point in common; we take this point to be  $P_1$ , without loss of generality. By A.4,  $\ell'$  contains some point  $P'_2$  distinct from  $P_1$ . Notice that  $P'_2$  is distinct from  $P_2, P_3, \ldots, P_n$  by Theorem 1.7.4. See Figure 1.6 below.

**Theorem 1.7.7.** If there exists one line which contains exactly n points, then every line contains exactly n points.

**Proof.** Let  $\ell$  be a line containing exactly *n* points,  $P_1, P_2, \ldots, P_n$ . Let  $\ell'$  be a line other than line  $\ell$  (which exists by Theorems 1.7.1 and 1.7.6). By Theorem 1.7.4,  $\ell$  and  $\ell'$  have exactly one point in common; we take this point to be  $P_1$ , without loss of generality. By A.4,  $\ell'$  contains some point  $P'_2$  distinct from  $P_1$ . Notice that  $P'_2$  is distinct from  $P_2, P_3, \ldots, P_n$  by Theorem 1.7.4. See Figure 1.6 below.

Theorem 1.7.7 (continued 1)



By Theorem 1.7.3, there is a unique line, say  $\ell_2$ , containing both  $P_2$  and  $P'_2$ . By A.4, there is a third point Q, distinct from  $P_2$  and  $P'_2$ , belonging to  $\ell_2$ . By Theorem 1.7.4, point Q is distinct from  $P_1, P_2, \ldots, P_n$  (consider lines  $\ell$  and  $\ell_2$ ). By Theorem 1.7.3, Q determined a unique line with each of the points  $P_3, P_4, \ldots, P_n$ , say  $\ell_3, \ell_4, \ldots, \ell_n$ , respectively.

Foundations of Geometry

Theorem 1.7.7 (continued 2)

Proof (continued).



By Theorem 1.7.4, line  $\ell_3, \ell_4, \ldots, \ell_n$  are distinct and are distinct from  $\ell$ . Also by Theorem 1.7.4, lines  $\ell_3, \ell_4, \ldots, \ell_n$  intersect  $\ell'$  in unique points  $P'_3, P'_4, \ldots, P'_n$ , respectively, distinct and also distinct from  $P'_1 = P_1$  and  $P'_2$  by Theorem 1.7.2. Hence line  $\ell'$  contains at least n points.

Theorem 1.7.7 (continued 3)

Proof (continued).



We now show that  $\ell'$  contains no more than *n* points. ASSUME to the contrary that  $\ell'$  contains another point, say  $P'_{n+1}$ . By Theorem 1.7.3 there is a unique line  $\ell_{n+1}$  containing *Q* and  $P'_{n+1}$  and, again, by Theorem 1.7.4 this line is distinct from  $\ell_1, \ell_2, \ldots, \ell_n$  and distinct from  $\ell$ .

# Theorem 1.7.7 (continued 4)



By Theorem 1.7.4, there is a unique point common to  $\ell_{n+1}$  and  $\ell$ , which we denote  $P_{n+1}$ , and which is distinct from  $P_1, P_2, \ldots, P_n$  by Theorem 1.7.3. But then line  $\ell$  has n+1 points, a CONTRADICTION. So the assumption that  $\ell'$  has more than n points is false. Since  $\ell'$  is an arbitrary line distinct from line  $\ell$ , the claim follows.

- (

# **Theorem 1.7.8.** If there exists one line which contains exactly n points, then exactly n lines pass through every point.

**Proof.** Let *P* be an arbitrary point. By Theorem 1.7.5 there is at least one line  $\ell$  which does not pass through P. By Theorem 1.7.7.  $\ell$  contains exactly *n* points. say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.3, P and each of  $P_1, P_2, \ldots, P_n$  determines a line  $\ell_1, \ell_2, \ldots, \ell_n$  and these lines are distinct by Theorem 1.7.4. Therefore there are at least *n* lines passing through *P*. **Theorem 1.7.8.** If there exists one line which contains exactly n points, then exactly n lines pass through every point.

**Proof.** Let *P* be an arbitrary point. By Theorem 1.7.5 there is at least one line  $\ell$  which does not pass through P. By Theorem 1.7.7,  $\ell$  contains exactly *n* points, say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.3, P and each of  $P_1, P_2, \ldots, P_n$  determines a line  $\ell_1, \ell_2, \ldots, \ell_n$  and these lines are distinct by Theorem 1.7.4.



Therefore there are at least n lines passing through P.

**Theorem 1.7.8.** If there exists one line which contains exactly n points, then exactly n lines pass through every point.

**Proof.** Let *P* be an arbitrary point. By Theorem 1.7.5 there is at least one line  $\ell$  which does not pass through P. By Theorem 1.7.7,  $\ell$  contains exactly *n* points, say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.3, P and each of  $P_1, P_2, \ldots, P_n$  determines a line  $\ell_1, \ell_2, \ldots, \ell_n$  and these lines are distinct by Theorem 1.7.4.



Therefore there are at least n lines passing through P.

# Theorem 1.7.8 (continued)

**Theorem 1.7.8.** If there exists one line which contains exactly *n* points, then exactly *n* lines pass through every point.

**Proof (continued).** Next, ASSUME there is at least one additional line,  $\ell_{n+1}$ , passing through *P*. By Theorem 1.7.4,  $\ell_{n+1}$  must intersect  $\ell$  is a unique point, say  $P_{n+1}$ , so that  $P_{n+1}$  is distinct from  $P_1, P_2, \ldots, P_n$ . But then  $\ell$ contains n + 1 points, a CONTRADICTION. So the assumption that there are more than *r* 



assumption that there are more than n lines passing through P is false, and hence there are exactly n line through point P. Since P is an arbitrary point, the claim follows.

**Theorem 1.7.9.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  points.

**Proof.** By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly *n* lines,  $\ell_1, \ell_2, \ldots, \ell_n$  passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P; so if we count all the distinct points on lines  $\ell_1, \ell_2, \ldots, \ell_n$  then we have the total number of points. By Theorem 1.7.7 every line contains exactly n points. So each of  $\ell_1, \ell_2, \ldots, \ell_n$  contains n-1 points besides point *P*. Therefore, there are a total of  $n(n-1) + 1 = n^2 - n + 1$  points,

**Theorem 1.7.9.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  points.

**Proof.** By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly n lines,  $\ell_1, \ell_2, \ldots, \ell_n$  passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P; so if we count all the distinct points on lines  $\ell_1, \ell_2, \ldots, \ell_n$  then we



have the total number of points. By Theorem 1.7.7 every line contains exactly *n* points. So each of  $\ell_1, \ell_2, \ldots, \ell_n$  contains n-1 points besides point *P*. Therefore, there are a total of  $n(n-1) + 1 = n^2 - n + 1$  points, as claimed.

**Theorem 1.7.9.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  points.

**Proof.** By Theorem 1.7.1 there exists at least one point P and by Theorem 1.7.8 there are exactly n lines,  $\ell_1, \ell_2, \ldots, \ell_n$  passing through P. By Theorem 1.7.3 (two points determine exactly one line), every point in the system, except point P itself, lies on exactly one line passing through P; so if we count all the distinct points on lines  $\ell_1, \ell_2, \ldots, \ell_n$  then we



have the total number of points. By Theorem 1.7.7 every line contains exactly *n* points. So each of  $\ell_1, \ell_2, \ldots, \ell_n$  contains n-1 points besides point *P*. Therefore, there are a total of  $n(n-1) + 1 = n^2 - n + 1$  points, as claimed.

**Theorem 1.7.10.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  lines.

**Proof.** By A.6 there exists at least one line  $\ell$ , and by Theorem 1.7.7 line  $\ell$  contains exactly *n* points, say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except  $\ell$  itself, passes through exactly one of the points  $P_1, P_2, \ldots, P_n$ .

**Theorem 1.7.10.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  lines.

**Proof.** By A.6 there exists at least one line  $\ell$ , and by Theorem 1.7.7 line  $\ell$  contains exactly *n* points, say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except  $\ell$  itself, passes through exactly one of the points  $P_1, P_2, \ldots, P_n$ .



By Theorem 1.7.8 exactly *n* lines (including line  $\ell$ ) pass through each of the points  $P_1, P_2, \ldots, P_n$ . So there is a total of  $n(n-1) + 1 = n^2 - n + 1$  lines, as claimed.

**Theorem 1.7.10.** If there exists one line which contains exactly *n* points, then the system contains exactly  $n^2 - n + 1$  lines.

**Proof.** By A.6 there exists at least one line  $\ell$ , and by Theorem 1.7.7 line  $\ell$  contains exactly *n* points, say  $P_1, P_2, \ldots, P_n$ . By Theorem 1.7.4 (two lines have exactly one point in common), every line in the system, except  $\ell$  itself, passes through exactly one of the points  $P_1, P_2, \ldots, P_n$ .



By Theorem 1.7.8 exactly *n* lines (including line  $\ell$ ) pass through each of the points  $P_1, P_2, \ldots, P_n$ . So there is a total of  $n(n-1) + 1 = n^2 - n + 1$  lines, as claimed.